Similar case studies

REF impact found 11 Case Studies

Currently displayed text from case study:

Societal and economic benefits from improved flood modelling based on pioneering Lancaster research in to risk and uncertainty in environmental modelling.

Summary of the impact

Improved flood risk modelling based on the application of research led by Keith Beven at Lancaster has had global impacts in improved flood defence policies and planning by governments, and in assisting insurers with their underwriting (for example in pricing and policy decisions). The benefits are not just financial — they are human too: improved understanding of flood risk and resilience protects life and assets, and has a positive impact on the well-being of many of those at risk. These impacts are at the centre of flood risk management across the UK, are being applied in nine other European countries, and now becoming the methods of choice for flood mapping in developing countries such as Thailand.

Submitting Institution

Lancaster University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics

Informing national and international policy on Integrated Flood Risk Management

Summary of the impact

Thorne's research for the Flood Foresight project changed UK policy towards sustainable Integrated Flood Risk Management (IFRM), as implemented by the Floods and Water Management Act (2010). This legislation introduced new systems of governance to clarify responsibilities, support co-ordinated actions, strengthen the roles of local stakeholders, foster the co-production of knowledge, and work with natural processes. Flood Foresight has attracted international attention and stimulated projects and policy changes elsewhere, including in the Taihu Basin in China and around the city of Gold Coast in Queensland, Australia.

Submitting Institution

University of Nottingham

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Studies In Human Society: Policy and Administration

Flood Damage Appraisal Research

Summary of the impact

Throughout the REF period our research - driven by risk assessment theory - has provided a continuously updated set of unique models, data and techniques for assessing the benefits of UK flood alleviation investment. These have been used to justify all flood alleviation investment for the whole of the UK for the whole of the REF period (c. £3bn), as well as for the previous 30 years. Our work has been central to all assessments by Defra and the Environment Agency (EA) of national flood risk (Foresight; NaFRA (England, Wales, and Scotland); LTIS) and all the Catchment Flood Management Plans for England and Wales. The research is also used in Scotland (by the Scottish Environmental Protection Agency, SEPA), by international and national insurers (e.g. through Risk Management Solutions Ltd), and in many other countries.

Submitting Institution

Middlesex University

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Economics: Applied Economics

Assessing the Hull Floods of 2007: establishing future flood management and protection strategies for the UK and the region

Summary of the impact

Exceptional rainfall in June 2007 lead to widespread flood damage in the UK; Hull was particularly badly affected with 8600 houses and 1300 businesses flooded, the closure of schools and cancellation of many events. At the instigation of the City Council, Hull University geographers produced two influential reports that explained how and why the flooding happened and what might be done to improve flood readiness for the future.

The reports had impact at a national scale. They fed into the findings of the House of Commons Select Committee on Environment, Food and Rural Affairs (published 7 May 2008) and the Pitt Report (a Government Independent Review, published 25 June 2008), which were both tasked with addressing the summer 2007 floods. Significant elements of `The Flood and Water Management Act' (2010), which was enacted subsequently, were informed by our research.

The reports also impacted at the regional scale. Their findings were adopted by Hull City Council, the Environment Agency and Yorkshire Water. Therefore, our research also shaped several practical strategies to improve flood prevention policies and minimise danger, damage, distress and expense in future floods.

Submitting Institution

University of Hull

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Agricultural and Veterinary Sciences: Other Agricultural and Veterinary Sciences
Medical and Health Sciences: Public Health and Health Services

Engaging communities in flood risk science and management

Summary of the impact

This research has demonstrated the effectiveness of an experimental method of public engagement - Competency Groups (CGs) - in situations in which the expertise involved in managing flood risk is called into question by the communities living with such risk. Working in two test areas (Ryedale, Yorkshire and the Uck catchment, Sussex) it has enabled novel research collaborations between scientists and concerned citizens that have generated bespoke flood models and new flood management options. The work of the Ryedale CG and the `upstream storage' proposals that it generated were incorporated into a successful multi-agency bid to a national competition launched by Defra for a project to test new flood management solutions for Pickering, and are now under construction in the catchment. Having become a national exemplar, the reach of the Competency Group approach in tackling public controversies about environmental expertise continues to extend beyond these two areas, within the UK and also abroad.

Submitting Institution

University of Oxford

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Medical and Health Sciences: Public Health and Health Services

Richards

Summary of the impact

This case study concerns the impact of interdisciplinary research on policies and practices to support river restoration and the aims of the European Water Framework Directive (WFD), which requires member states to bring riverine hydromorphology and ecology to 'good' status by 2015, measured against a reference condition. The research achieved impact through an evolving process of co-production, in that academics engaged with user communities from the outset. Richards, Hughes and Horn (Department of Geography, University of Cambridge) worked closely with users to design a knowledge transfer guidebook to communicate restoration science to users.

This was distributed amongst Environment Agency (EA) staff to aid the planning and implementation of restoration projects. Further impacts included promoting floodplain restoration for flood risk management (Richards, as a member of an EA Regional Flood and Coastal Commitee); a rapid assessment method for river quality (Richards and Horn) that forms the basis of cross-boundary WFD compliance practices across the whole of Ireland; and knowledge transfer of EU WFD ecological assessment practices to China (Richards).

Submitting Institution

University of Cambridge

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

Increased resilience and recovery after natural disasters

Summary of the impact

Contingency planning to prepare for, respond to, and recover from emergencies, including natural disasters such as flooding, is a priority for all governments. However, such planning has traditionally focussed on risk assessment and emergency response, with recovery conceived of solely in terms of repairs to infrastructure and short-term health protection. Consequently, residents' needs for support during the longer-term recovery process hardly featured at all in policy prior to our research, which has provided new insights into the nature of disaster recovery. Starting from a focussed case study of the 2007 floods in Hull, we have delivered leading research that has advanced understanding of the social, economic and practical challenges faced by people impacted by disasters. Our research has transformed the ways in which policy makers understand and manage the human impacts of the recovery from natural disasters. It has had a key role in shaping guidance, strategy and practice not only in UK responses, but globally, for example informing Australian authorities to improve their responses to both floods and bush-fires. Our impact was recognized by the ESRC in 2013, winning second place for Outstanding Impact in Public Policy, in their first ever `Celebrating Impact' awards.

Submitting Institution

Lancaster University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Medical and Health Sciences: Public Health and Health Services

River flooding and diffuse pollution

Summary of the impact

Rapid runoff from rural parts of river catchments can pollute downstream water bodies by transmitting sediment, agricultural fertiliser, or other pollutants from extensive diffuse sources, and can also lead to downstream flooding. Environmental managers often try to mitigate these problems by encouraging interventions, such as changes in farming practice or the construction of physical obstacles, which delay runoff from rural catchments. DU geographers have worked with stakeholders to develop a family of flexible user-friendly computer modelling tools which predict and map the likely critical sources of pollution or flooding and the downstream locations that are most at risk. This helps environmental managers target the best locations for intervention and compare the effects of alternative interventions. The software tools have been used by regulatory bodies (e.g. the Environment Agency) and NGOs (e.g. Rivers Trusts) to plan mitigation works and benefit local communities and the environment in many parts of England.

Submitting Institution

University of Durham

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Agricultural and Veterinary Sciences: Other Agricultural and Veterinary Sciences

1. Improved Flood Hydrodynamic, Hazard and Water Quality Model Predictions

Summary of the impact

The Hydro-environmental Research Centre (HRC) at Cardiff University has developed a widely used hydro-environmental numerical model, called DIVAST (Depth Integrated Velocities And Solute Transport). DIVAST addresses the need for more accurate models to predict flood risk and water quality levels for a range of extreme events. The model has been implemented in commercial codes, marketed by CH2M HILL (previously Halcrow), and used in design studies, for example, undertaken by Buro Happold. The impacts of the research are marked environmental, health, economic and industrial benefits. It is used by major organisations around the world on large-scale projects and, in particular, for mitigation planning against national and international risks associated with floods and water quality.

Submitting Institution

Cardiff University

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Oceanography, Physical Geography and Environmental Geoscience
Engineering: Interdisciplinary Engineering

Robust risk assessments of climate change, flood and drought

Summary of the impact

Research at Newcastle University into stochastic rainfall models and their application has transformed the practice of impact assessment of climate change and risk assessment of environmental hazards across multiple sectors. The Newcastle methods underpin the "Weather Generator", a web-based tool which has been made available since 2009 by DEFRA as part of their official UK Climate Projections (UKCP09). The tool's incorporation into this official data source means that the models generated underpin multi-sectoral risk assessment throughout the UK and subsequently have led to the adoption of stochastic methods in general, particularly in the water and insurance industries to produce more robust risk assessments.

Submitting Institution

Newcastle University

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Atmospheric Sciences, Physical Geography and Environmental Geoscience

Filter Impact Case Studies

Download Impact Case Studies