Similar case studies

REF impact found 10 Case Studies

Currently displayed text from case study:

Nanoco Grp Ltd

Summary of the impact

Nanoco, is a University of Manchester spin out company having a current market capitalisation of £384m (31/7/2013). Nanoco's proprietary processes enable, for the first time, commercial quantities of high-quality quantum dot nanoparticles, free of toxic heavy-metals, to be manufactured economically — for incorporation into next-generation displays & solar-cells."

As a result of its world-leading disruptive technology, Nanoco has, in the REF period, forged down-stream global business partnerships that have generated around £11m revenue, creating 95 jobs with Nanoco (at a cost of over £3m/year), substantial secondary employment in the supply chain, and underpinning technology to enable the delivery of more energy-efficient electronic devices.

Submitting Institution

University of Manchester

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Toshiba semiconductor quantum photonics

Summary of the impact

The development of Molecular Beam Epitaxial (MBE) growth techniques for self-assembled quantum dots at Cambridge University has led to the creation of electrically driven, compact single-photon and entangled-photon sources, and their demonstration in quantum key distribution (QKD) systems. This highly-cited work has led to significant recent investment in R&D in this area by Toshiba, one of the world's leading microelectronics companies, influencing company policy to the highest levels. It has stimulated world-wide interest in quantum information technology, in government institutions and companies from start-ups and SMEs to multinationals.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Quantum Physics

Quantum and classical atomistic methods to enable improved processing and performance of materials

Summary of the impact

This study describes two atomistic methods that have been used to explain better the behaviour and improve performance of materials. The research at Loughborough University from 2006-2013 has led to improved awareness and understanding in the areas of thin film growth and in irradiated structural materials for nuclear power. It has also led to changes in the operational models that Atomic Weapons Establishment (AWE) use. One of the algorithms developed has been incorporated into standard quantum chemistry packages, due to its increased accuracy and efficiency. The outcomes of the research have also contributed to changing UK government policy with regards to working with India in the area of nuclear research.

Submitting Institution

Loughborough University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics

Stephen Hawking

Summary of the impact

The research underpinning Stephen Hawking's books, TV appearances and lectures has shaped public attitudes towards frontier research in cosmology. It attracts large audiences to learn about his research, and he is the most well-known scientist in the world. Highlights include the publication of his 2010 popular-science book The Grand Design, and the Discovery Channel series Into the Universe with Stephen Hawking. Further evidence of the impact of Hawking's research was the award of the 2009 Presidential Medal of Freedom (America's highest civilian honour) and his role as narrator in the 2012 Paralympic Opening Ceremony watched by over 11M UK viewers.

Submitting Institution

University of Cambridge

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics
Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Economics: Applied Economics

Commercial exploitation of strained semiconductor alloys in communications, energy efficiency and consumer electronics

Summary of the impact

Surrey's Photonics Group has played a pivotal role in understanding and developing compound semiconductors for use in photonic devices. The strained-layer quantum well technology proposed and developed in their research is now incorporated in the vast majority of CD, DVD and blu-ray systems, in telecommunications and the internet, in computer mice, and in LEDs for solid-state lighting. Strained-layer quantum well lasers are manufactured by industry in their millions annually with a market value estimated in 2009 to be €15bn. Compared to the alternatives; these lasers offer greater efficiency, which has opened up new applications.

The Group's research has expanded to develop semiconductors for use in energy generation and combatting climate change, and in novel photovoltaics, low energy internet communications, and greenhouse gas detection. The research has led to engagement with the UK government's energy minister and has stimulated public discussion around the world.

Submitting Institution

University of Surrey

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Nanotechnology

Novel Quantum Cascade Laser technology leads to new products, processes and market opportunities

Summary of the impact

The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Other Physical Sciences

Hitachi

Summary of the impact

Research in the Microelectronics Group of the Cavendish Laboratory in the area of single-electron nanoelectronics, quantum computing and spintronics has been exploited by Hitachi, one of world's leading microelectronics companies. Research breakthroughs made in the Cavendish have defined Hitachi's R&D directions in quantum computing and spintronics, led to several Hitachi product developments and influenced senior Hitachi strategic decision makers regarding the future of computing.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Engineering: Materials Engineering

Characterising a unique pressure sensitive material for use in mobile phones: Peratech Ltd (Peratech)

Summary of the impact

Collaborative research between Durham Physics and Industry showed that a serendipitously discovered new material had unique, pressure sensitive conduction properties which were derived from quantum tunnelling. This research, published in 2005, is cited as one of the top 25 papers in that Journal for that year. Peratech was set up to commercialise this material for applications including switches and mobile phones as the pressure sensitivity gives a new dimension to scale the response. This company now employs 25 people, has an annual turnover of £3M and won the 2012 Queens award for Enterprise in the innovation category.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Research-inspired outreach work boosts public interest in mathematics and transforms perceptions of mathematicians

Summary of the impact

Thousands of exhibition visitors, public lecture-goers, readers, school students and TV viewers have been encouraged to explore areas of number theory and mathematical physics as a result of public engagement initiatives in four countries by University of Bristol academics. Lay people's encounters with the Bristol scientists have also changed their view of mathematics, mathematicians and the nature of their work.

Audiences have been reached through the Royal Society Summer Science Exhibition in 2011, a science fair in 2012, an award-winning Japanese TV documentary made in 2009, popular lectures given between 2008 and 2013 and contributions to popular science books.

Research on quantum mechanics, chaos and the Riemann Hypothesis is very appealing to members of the general public who have an interest in popular science. Bristol research ties these areas together. Its dissemination through various media has captured public attention internationally and inspired non-mathematicians to consider the mysteries addressed by mathematical research.

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics

The London Low Temperature Laboratory

Summary of the impact

The London Low Temperature Laboratory (LLTL) led by Professor Saunders in the Department of Physics, has developed novel ultra-low temperature (ULT) platforms and instrumentation alongside its programme of fundamental research.

  • The group's research has acted as a key driver for improvements in scientific instrumentation, refrigeration and thermometry, which have met critical market needs, including the capability to measure the absolute temperature in these extreme environments.
  • It has led to a direct economic impact to industry through the development of new commercial scientific instrumentation products.
  • Key partners in delivering impact are Oxford Instruments Nanoscience (OIN), the European National Measurement Institutes (NMIs), and the European Microkelvin Consortium.

Submitting Institution

Royal Holloway, University of London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies