Log in
Fundamental research in Durham Physics Department in 2002-4 demonstrated that the nanoscale structure of materials gives a unique signature from its effect on the diffuse scattering of laser light. Paper has a large scale stochastic pattern from the wood fibres which is distinctive enough to allow identification of the manufacturer, while small scale random variations can uniquely identify an individual sheet. This technique can be used to combat forgery by `fingerprinting' documents, packaging and even gold bullion. The impact from this intellectual property is exploited through a spinout company, Ingenia technology, which has won multiple awards.
Aurox Ltd is an Oxfordshire spin-out company formed in 2004 by Prof Mark Neil (at Imperial since August 2002) with former colleagues from Oxford University. Its main product line consists of wide field optical sectioning fluorescence microscopes based on the principle of structured illumination and detection using patterned disks. The microscopes use conventional (lower cost) light sources and do not require a scanning system which sets them apart from competitors. Research at Imperial has impacted on the design of disk patterns for optimising performance and has played a critical role in bringing these microscopes to market. Aurox's systems are supplied to and marketed by Carl Zeiss (as VivaTome™) and Andor Technology (as Revolution DSD™) for application in the biomedical sciences, generating successful sales over the period 2008-2012 and enabling Aurox to embark on a second-generation development programme. Since 2008 Aurox have sold more than 150 units with market value in excess of £3M. The majority of this £3M in sales have been since 2010 when an optimisation step which was developed and devised at Imperial College was incorporated into the Aurox products.
Midaz Lasers Ltd is a spin-out laser company formed by academic founders, Professor Michael Damzen (Director and Chief Technology Officer, CTO) and Dr Ara Minassian (Chief Scientific Officer, CSO), in 2006 as the vehicle for commercial exploitation of patented laser technology [4] arising from Prof Damzen's research group in the Physics Department at Imperial College London.
Midaz has designed and assembled multiple engineered laser and amplifier products, incorporating this patented technology, and has sold units to industrial customers in Europe, N. America and Asia since 2010. The primary market and beneficiary for Midaz laser technology is the industrial laser manufacturing sector and the benefit of the technology is to create laser industrial tools for higher throughput and lower cost manufacturing, including in the semiconductor industry for production of consumer electronics. In July 2012, Midaz was successfully sold to world-leading laser company, Coherent Lasers Ltd, for $3.8 Million.
Researchers at Imperial College London have established a spin-out company called Ionscope Ltd which develops and sells Scanning Ion Conductance Microscopes (SICM). This is a novel technology that can (i) characterise live cells and their derivatives non-destructively during differentiation and development, (ii) correlate biophysical features at unprecedented resolution with detailed transcriptional information on a single cell level, and (iii) steer cell fate by mechanical stimulus. Other high magnification techniques interfere with or kill living cells, whereas SICM is benign, allowing living cells to be studied over long periods, making it a highly desirable technology for all groups working within biomedical research. The technique has application in the study of living processes at nano-scale, which to date has included neurons, heart muscle, kidney, sperm and stem cells. Ionscope Ltd sales since 2009 have totalled [text removed for publication], with the company registering a 20% increase in its revenue over the past 5 years.
Molecular Vision Ltd ("MV"), which was spun-out of Imperial Innovations, develops simple-to-use, point-of-care diagnostic devices (known as the BioLED™ platform) that quickly produce lab-quality information from a single sample of bodily fluids. Since 2008 MV has validated the platform, including demonstration of its CardioplexTM triple test for myoglobin, CK-MB and troponin-I in a serum sample, and undertaken >£1.5M of contract work for a variety of customers including Acrongenomics Inc, Microfluidic ChipShop and L'Oreal; addressing analysis problems relating to kidney and cardiac health, pathogen identification and cosmetics. During the REF period the Company has generated a total of over £3.4m in investment, contract revenue and non-UK grant funding and created greater than 50 man years of UK employment, primarily at the PhD level. Abingdon Health Group acquired a majority stake in MV in 2012 as part of its strategy to create a fully integrated business in the UK that is able to compete in the large and global immunodiagnostics market.
Molecular Vision Ltd (MV), an Imperial Innovations spinout, has developed a low-cost technology for multiplexed analysis on bodily fluids. The BioLED™ platform rapidly delivers lab-quality information from a single-sample point-of-care diagnostic device. Since 2008 MV has validated the platform, including demonstration of its Cardioplex™ triple test for myoglobin, CK-MB and troponin-I in a serum sample, and undertaken > £1.5M of contract work for a variety of customers including Acrongenomics Inc, Microfluidic ChipShop and L'Oreal. A further £1.2M in non-UK and £2.6M in UK equity investment and > £660K in non-UK grant funding has been injected via MV into the UK economy during the REF period, securing > 50 person years' employment. MV is now a key component of the Abingdon Health Group's (AHG's) strategy to create a fully integrated UK business to compete in the multi-billion pound global immunodiagnostics market. Agreements with a leading European pharmaceutical company and a large multi-national chemical company, in both cases to co-develop point-of-care diagnostic tests in the UK, are now underway.
Work since 1993 at Imperial College has led to a novel generic approach to Separation Science called: Label Free Intrinsic Imaging (LFII) — with applications in high throughput proteomics, metabolomics, analytical chemistry, health care diagnostics and genomics. LFII was commercialised by Imperial spin-out deltaDOT Ltd in Nov 2000. Sales of LFII products by deltaDOT have been made to various sectors including pharmaceutical, analytical and diagnostic companies. The average annual turnover of deltaDOT Ltd in the REF period was >£600k per annum and the net worth and total assets in 2012 were £569,595 and £808,027, respectively. The deltaDOT technology has been adopted by the US multi-million dollar DARPA-funded [Defense Advanced Research Project Agency] rapid-vaccine development programme. In 2009 an affiliate company, deltaDOT QSTP-LLC, was formed in Qatar, developing a world-class proteomics research and testing facility in Doha also entirely based on the LFII technology. Since its formation deltaDOT QSTP-LLC has generated total revenues of >$10M.
Locust and grasshopper outbreaks can form swarms containing billions of insects, creating feared and damaging agricultural pests. Following research at Imperial College London, the entomopathogenic fungus Metarhizium acridum was developed into an oil formulated product (`Green Muscle®') that could be applied by ground-based and aerial spray equipment at ultra-low volume (ULV) rates, when locust and grasshopper populations periodically increased. Green Muscle® has since been used to treat locust outbreaks in Israel and five southern African countries. Green Guard®, an associated mycoinsecticide marketed in Australia, has been used extensively to control locusts in regions where there are land use limitations on chemical pesticides. Both Green Musclef6da and Green Guardf6da are supplied by Becker Underwood. Besides the success of Metarhizium as an effective, environmentally-friendly locust control option, substantial science and enabling technology ensued, that should accelerate the development of other mycopesticides as important alternatives to currently beleaguered chemical pest control methods.
Methodological, algorithmic and interpretational advances in wavelet techniques for time series analysis are encapsulated in the research monograph by Percival and Walden (2000): "Wavelet Methods for Time Series Analysis" (WMTSA). Multiple language software packages have been developed from the book's contents, including the Spotfire S+ package from the major commercial software company TIBCO (2008-present). TIBCO Spotfire clients span many sectors and include major companies such as GE, Chevron, GlaxoSmithKline and Cisco. Further applications of the wavelet techniques developed in WMTSA include in the biomedical, conservation and financial sectors. WMTSA is used, for example, in functional Magnetic Resonance Imaging by GlaxoSmithKline, to monitor cracks in the dome of the UNESCO world heritage site Santa Maria del Fiore Cathedral in Florence, and by the Reserve Bank of New Zealand in its analysis of measuring core inflation.
Questions about the benign or malignant nature of liver tumours are common and pressing since they determine how the patient is managed. Benign masses are frequently encountered; they usually do not require intervention but are easily mistaken for malignancies with conventional imaging methods. Work at Imperial College demonstrated that microbubble contrast agents have the special property of lingering in both normal liver tissue and in benign solid masses, whereas malignancies do not retain microbubble. The discovery of this property at Imperial has led to their use worldwide as a diagnostic tool. In 2012 NICE recommended their use as being cost-effective for this use.