Log in
Research at the University of Manchester on laser cleaning of Ti alloys has resulted in practical implementation of the technology at Rolls-Royce for the automatic preparation of surfaces prior to electron beam welding. This has been applied to 24 different aero-engine component types including compressor drums across most current engine families. This has resulted in close to 100% `first time right' aero-engine component welds. The technology is also being adopted by BAE Systems to replace chemical cleaning during airframe manufacture. The elimination of manual and chemical cleaning processes results in savings of several million pounds per annum.
This is an example of early economic impact where research on various aspects of laser engineering has resulted in the development of inexpensive, compact, efficient and user-friendly laser sources. An example is the incorporation of quantum dot structures into semiconductor laser architectures, with these replacing much larger and more expensive systems, with a range of applications in areas such as microscopy, biomedical diagnosis and therapy. This work has led to the generation of key know-how and patents that have been subsequently licensed as well as resulting in a variety of laser-related products being brought to market. Additionally, it has resulted in extra staff being employed at one of our partner companies.
Impact: Economic gains / altered business practices.
Research on ultrafast lasers has led to the development of new products and services and has been pivotal in the development of a whole field of new technology.
Significance: The research underpins the product development of a range of world leading companies including Femtolasers, Newport Spectra-Physics and Menlo Systems.
Reach: The companies that use the technology represent all of the leading players in the solid-state femtosecond laser field, a marketplace worth more than $250M annually.
Beneficiaries: The impact presents economic gains to the companies involved and underlies many applications in e.g. biology and medicine, providing significant benefits to the public at large.
Attribution: The research was performed by Professor Sibbett's group.
Research in solid state lasers and non-linear optics in the Department of Physics has led to the creation of innovative laser companies in Glasgow serving global scientific and industrial markets. World-leading products have opened up applications in biomedical imaging, security, defence, pollution monitoring, material processing and fundamental spectroscopy. The companies Coherent Scotland Ltd and M Squared Lasers Ltd can trace a direct link to the research in the Department of Physics and are the central theme of this case study. Since 2008, these two companies have created an estimated 600 person years of employment and £135M of sales from products underpinned by research undertaken at Strathclyde. The wider cluster of companies, researching, designing and developing laser products, including Thales Optronics and more recently the Fraunhofer Centre for Applied Photonics, which has a close working relationship with the University, has made Glasgow one of the leading European centres for innovative laser manufacture.
Pound-Drever-Hall (PDH) locking, developed into a practical technique by researchers at the University of Glasgow, is the ubiquitous method for the precise frequency control of stable laser systems. This control is central to laser products from companies such as Toptica and Newport, and has an estimated global annual market in excess of £5M. The PDH stabilisation technique is essential for the operation of the time standards maintained in all of the world's Governmental Metrological Standards Laboratories (e.g. NPL, NIST, BIPM) and finds applications in inspection tools in the semiconductor industry and deep UV lasers for UV-Raman spectroscopy.
Laser cleaning is now a standard technique of great value in the conservation process to which research conducted at Loughborough University made a significant contribution. This work played a major part in introducing laser cleaning to conservators across Europe and further afield and was instrumental to the preservation and restoration of world heritage sites such as the Acropolis at Athens and important works of art including pieces by Henry Moore and Jacob Epstein. In addition to the cultural impact, the availability of laser cleaning techniques has: improved public services and understanding of, and engagement with, the conservation process (live restoration of artefacts); improved health (of restoration workers); influenced conservation practitioners (through an enhanced skill-set).
Research in the laser photonics area has led to the formation and continuing development of two spin-out companies, Lynton Lasers Ltd and Laser Quantum Ltd, with annual turnover of £5.3m and >£12m respectively, and direct economic impact of [text removed for publication] over the REF period. Laser Quantum Ltd manufacture and market OEM diode pumped solid state lasers and Ti:sapphire lasers, which are incorporated in the products of major international companies in the scientific and entertainment sectors. Lynton Lasers Ltd manufacture and market medical devices for the cosmetic and aesthetic surgery market. Their products and services have underpinned the business of [text removed for publication] over the REF period. With an average cost of between [text removed for publication] over the REF period.
High-power lasers developed at the University of Glasgow now lie at the heart of state-of-the-art technologies in the commercial printing, medical and defence markets. University of Glasgow spin-out company Intense has introduced more than 10 new diode laser products with superior brightness, longer lifetimes and increased reliability to these markets since 2008. [text removed for publication.] In 2011 Intense was bought by ORIX USA Corporate Finance Group for an undisclosed sum.
The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.
The development by Tallents et al of a new plasma opacity measurement technique contributed to the decision by the UK Ministry of Defence (MoD) to construct the £150 million Orion laser at the Atomic Weapons Laboratory (AWE) for the measurement of material properties at high energy density. Orion will enable AWE to measure e.g. opacities important in nuclear weapons design without underground tests and at much lower cost than would have been the case if it had followed the French and US programmes with lasers costing over £1 billion.