Log in
Atlas Genetics Ltd is a University of Bath spin-out company established in 2005 by Dr John Clarkson, a former lecturer in the Department of Biology and Biochemistry (DBB). In collaboration with DBB researchers, Atlas Genetics developed novel technology for rapid (<30 minute) and robust detection of infectious diseases at the point-of-care. Atlas Genetics has raised over £22m funding specifically to develop the Atlas ioTM detection system, which combines a patented electrochemical detection system with probes for specific micro-organisms within a small disposable cartridge. Different probe cartridges are used to detect a range of pathogens that have critical clinical importance and large-scale socio-economic significance, including Candida, methicillin resistant Staphylococcus aureus (MRSA), bacterial meningitis, and sexually transmitted diseases (STDs) Trichomonas, Chlamydia and Gonorrhoea. Candida research in DBB underpinned the specificity, sensitivity and application of the technology to clinical samples and was used in seeking capitalization for Atlas.
Atlas Genetics re-located from the University to a nearby business park and employs 35 full-time staff, some having moved from academia into the company largely thanks to the synergistic relationship with University of Bath researchers. The ioTM platform has undergone successful clinical tests on Chlamydia and Trichomonas at Johns Hopkins University, USA. The ioTM platform and Chlamydia test is scheduled for clinical trials in 2014, with roll out in Europe and the USA, pending regulatory approval, providing global reach within the $42bn in vitro diagnostics market.
Research; date; attribution:
Since 2005, EaStCHEM research expertise in electrochemistry and in sensing and detection, in partnership with University of Edinburgh researchers and expertise from the associated disciplines of medicine, engineering and physics and funded by the Scottish Intermediary Technology Institute (now Scottish Enterprise, SE) has formed a multidisciplinary team and developed the research outputs and novel platform technologies with enhanced detection characteristics (sensitivity, specificity, ability to handle clinical samples, rapid time-to-result) applicable to point-of-care diagnosis of wound infection state.
Significance: This technology was exclusively licensed from SE by Mölnlycke Health Care AB in 2012. Mölnlycke Health Care AB also established a new subsidiary, MHC Scotland Ltd in the BioQuarter in Edinburgh, to develop this technology, marking their entry into the multibillion dollar global point of care diagnostics market, as well as employing 5 UoE researchers.
Reach: Mölnlycke Health Care AB is a leading innovator in infection control in hospitals having ~7000 employees worldwide and with manufacturing plants in 9 countries.
Beneficiaries: The impact deriving from the underpinning research is to Mölnlycke Health Care AB as evidenced by formation of a significant new business venture and alteration of business practice, through the adoption and commercialisation of our new technology platform and the employment of 5 UoE staff from the research programme as human capital in MHC Scotland Ltd.
Impact: altered business practice / new business venture created
Research into biophysical detection methods undertaken within PHYESTA has resulted in a Gothenburg-based multi-national, Mölnlycke Health Care, establishing a Scottish subsidiary (MHC Scotland) to exploit a commercial (exclusive license) partnership involving PHYESTA and Scottish Enterprise. This represents (i) creation of a new business sector for the company, and (ii) adoption of a new technology into its portfolio.
Significance: Mölnlycke Health Care has used its access to PHYESTA's IP portfolio, via license arrangements, as the primary vehicle for creating a new business venture enabling its entry into the diagnostics market for the first time.
Reach: Mölnlycke Health Care is a leading innovator in infection control in hospitals with employees in 30 countries worldwide. Its entry into the diagnostics market has implications for the entire company.
Beneficiaries: Impact in 2011-2013 pertains primarily to Mölnlycke Health Care and to the Scottish economy.
Attribution: This work was led by Professor Jason Crain, in collaboration with Professor Andrew Mount (Chemistry), Professor Peter Ghazal (Medicine), and Professor Anthony Walton (Engineering).
High-throughput genotyping has revolutionised the genome-wide search for associations between genetic variants and disease. Professor Sir Edwin Southern of the University of Oxford's Biochemistry Department invented the highly cost-effective array-based method of analysing genetic variation based on hybridisation between probes and samples on glass slides or `chips'. The spin-out company Oxford Gene Technology (OGT) founded by Southern in 1995 licenses the patent to manufacturers of `single nucleotide polymorphism (SNP) chips', including Illumina and Agilent, a global business exceeding $500M per year. Southern has continued to refine and extend this technology to increase its speed, efficiency and cost-effectiveness. This revolutionary technology has widespread applications such as prediction of individual risk, development of new drugs, provision of personalised treatments, and increased cost-effectiveness of clinical trials. Licence revenues fund R&D within OGT, and endow charitable trusts supporting primary school science education in the UK and crop improvement in the developing world.
Professor Chris Toumazou FRS and his team at Imperial College have developed biomedical technologies based on ultra-low-power CMOS and ISFET electronics to provide the medical community with the means to rapidly diagnose, monitor, and treat diseases with confidence and at low cost. Since 2008, the impact of this research has been to:
I1) spinout a start-up company DNA Electronics (DNAe) to deliver point-of-care products to quickly recognize genetic diseases and identify potential poor drug interactions;
I2) enable Life Technologies (formerly Ion Torrent) to develop the Personal Genome Machine (PGM) that have generated $100m in sales (in the 18 months since its launch) using DNAe's core semiconductor sequencing IP;
I3) save lives by using the PGM in clinical and public health applications;
I4) spinout a second start-up company (Toumaz) that has released SensiumVitals®, a FDA-approved and CE-marked ultra-low power system for wireless monitoring of patient vital signs;
I5) provide early warning of adverse physiological events in clinical settings using the SensiumVitals® platform resulting in improved quality of patient care and reduced demand on intensive care provision in hospitals internationally.
A commercial continuous glucose sensor/monitor that provides real time data has been developed by GlySure, a venture capital funded company founded on the basis of Bath chemistry. The sensor enables Tight Glycaemic Control (TGC) for control of glucose levels in patients in Intensive Care Units (ICUs), reducing severe hypoglycaemia, glycaemic variability and the nursing burden, maximising both patient and economic benefit. This has led to (i) £13.5M investment in the company GlySure Ltd directly for development of the system based on the Bath chemistry and (ii) successful results from full clinical trials of the device, involving more than 200 ICU patients, prior to CE approval and launch in the EU.
Hagan Bayley's research on nanopore sensing for DNA sequencing at the University of Oxford led to the formation of the spin-out company Oxford Nanopore Technologies Ltd (ONT) in 2005. Since 2008, ONT has raised £ 97.8M to support research and product development. This level of investment arises as a direct result of the pioneering technology ONT has developed, based on research in the UOA, which has the potential to revolutionise DNA sequencing and other single molecule analyses. ONT currently employs 145 people, nearly six times as many as in 2008, and was recently valued at $ 2 billion. Evidence from ONT was used in a 2009 House of Lords report on genomic medicine, demonstrating ONT's position at the forefront of this new technology.
Impact: New business, technology, intellectual property and employment resulting from the invention and exploitation of a micro-scale laboratory device (ScreenTapeTM).
Significance: New business and technology commercialised resulting in sales of novel products worldwide, acquisition by Agilent Technologies Limited (Agilent) for £[text removed for publication] in 2011, product sales of over £[text removed for publication] to August 2013, generation of sustained employment for 50-160 people, major inward investment (£6M) by local investors followed by a US multinational.
Beneficiaries: The economy, commerce, employment, research and diagnostic laboratories, Agilent Technologies Inc. (Agilent).
Attribution: UoE Prof Peter Ghazal and Dr Douglas Roy inventors on granted patent, establishment of multi-disciplinary research in biochip medicine, collaborators with ex-Motorola engineers, co-founders of spin-out company for commercialisation of intellectual property.
Reach: Worldwide, including employment and product sales. Inward investment to UK.
The spin-out company, Degrasense, has developed and protected intellectual property of technology capable of quantifying specific proteolytic enzymes through changes in electrochemical responses (impedance) at electrodes due to the enzymatic degradation of polymer coatings. The company has detected several specific proteases that are relevant to the monitoring and treatment of a number of conditions including: periodontal disease, multiple sclerosis, haemophilia and hypertension. The technology is currently being validated in a clinical trial as a point of care sensor for the detection of active periodontal disease. Point-of-care sensors provide immediate, low-cost test results in non-laboratory settings, offering a more patient-centred approach to healthcare and earlier detection of disease.
Communicable diseases are a major health burden in the developing world. Early detection and accurate identification of infectious agents is key to their management. However, the complex procedures and logistics of current diagnostic tests often make them unsuitable for use in developing countries. Two technology platforms have been developed that have led to a new generation of simple and inexpensive rapid tests that can be applied in resource-limited settings. A spinout company was set up to allow translation of these platforms into new products. Three tests (Chlamydia, Hepatitis B and HIV) were launched since 2008, with test kits marketed, allowing patients to receive treatment for infections which would have previously gone unnoticed and untreated. The spinout company has raised >$30 million, of which >$20million is since 2008.