Similar case studies

REF impact found 19 Case Studies

Currently displayed text from case study:

Failure in Multilayer Ceramic Capacitors (MLCCs) for AVX Ltd

Summary of the impact

The provision of professional analysis and advice has created an economic impact of $0.6M with AVX Ltd, a leading supplier of electronic components within the Kyocera Group. This information was pivotal to AVX Ltd retaining a major contract, for multi-layer ceramic capacitor (MLCC's) supply through to the automotive manufacturer Volkswagen Group. Our intervention addressed a reliability issue in the MLCCs and allowed them to improve processes and revise manufacture protocols. The impact drew on previous collaborative research with AVX Ltd and innovative methodologies for preparation of micro and nanoscale samples of materials in capacitors in academic research.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Affordable Diffusion Bonding (ADB) of laminate sheet to produce micro-cellular structures relevant for ultra-lightweighting and high efficiency thermal and chemical devices for the aerospace, automotive, medical, chemical manufacturing sectors.

Summary of the impact

Diffusion bonding (DB) is well-known for producing structured materials with fine scale features and is a critical technology for high efficiency reactors, e.g. heat exchangers and fuel cells, but currently equipment is slow and expensive (and there are size limitations to the `assemblies' that can be built). The University has researched and developed, with industry partners, a rapid affordable diffusion bonding (ADB) process involving direct heating to provide appropriate temperature and stress states and utilising flexible ultra-insulation (vacuum) for pressing titanium (and now aluminium) sheets together. The process operates at low stresses thus avoiding `channel' collapse. Investment is taking place in the partner companies to exploit the technology. A breakthrough has been achieved in the chemical machining of three dimensional structures for laminar flow technology assemblies in aluminium and titanium, that can be built by ADB.

Submitting Institution

University of Wolverhampton

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering

18. Improving survivability of protective structures through novel design and modelling

Summary of the impact

The vulnerability of both military and civilian infrastructure to the threat of terrorist activity has highlighted the need to improve its survivability, and this poses a significant design challenge to engineers. Research work at Imperial has led to the development of novel constitutive relationships for polymeric materials coupled to novel analysis procedures; software algorithms for effective simulations of blast and impact events; and enhanced experimental testing methods allowing a fundamental understanding of the structures. According to Dstl, this body of research has `unquestionably improved the security and effectiveness of the UK armed forces operating in hostile environments abroad as well as the safety of citizens using metropolitan infrastructure within the UK'. The techniques have been applied to vehicles and UK infrastructure, including for high profile events, such as the 2012 Olympics.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Improving crop protection for brassicas through the development of in-field devices to detect fungal pathogens

Summary of the impact

Brassica production contributed £245.7m to the UK economy in 2012 and is growing year on year.i Research described below has led to the development of simple to use hand-held devices which enable brassica growers to identify the presence of a specific plant disease in the air or soil. With this knowledge, the grower can make an informed decision about when to plant a new crop or to spray an existing crop. This benefits the grower economically through a decrease in losses to disease and lower pesticide costs. Beyond the benefits for the grower, the reduction in pesticide use is consistent with UK and European policy on the environment.

Submitting Institution

University of Worcester

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Immunology, Medical Microbiology

1. Standards for the Application of Materials in Industry

Summary of the impact

Impact on industry, academia and government institutions from engineering materials research in the Mechanical Engineering department has been delivered through it directly leading to UK, USA and International Standards and Codes relating to three themes:

  • Predicting and assessing the service life of high-temperature components.
  • Determining the fracture resistance of plastics, composites and adhesives.
  • Predicting the catastrophic failure of plastic pipelines.

The results of the research of staff in this unit have led directly to UK, US and International Standards and Codes: ASTM Standards E1457-07 (2012) and E2760-10 (2012); R5 EDF Energy Code of Practice (2012); BS 7910 (2013); ISO 25217 (2009); ISO CD 15114 (2011) and ISO 13477 (2008). These documents all cite peer-reviewed publications by staff from this unit. These Standards and Codes are now the basis of fracture-mechanics methodologies used by leading engineering companies like Airbus, EDF, E.ON, GKN, Rolls-Royce and Vestas, whose commercial success depends upon technological leadership. In this way our research has led to savings by UK industry of many millions of pounds, as detailed in Section 4.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Materials Engineering

Computer methods for assessing reliability of complex structures

Summary of the impact

The Computational Mechanics and Reliability Group at the University of Greenwich has been developing computational methods for predicting material behaviour and component reliability since the late 1990s. This case study details economic and environmental impacts and impacts on practitioners. In particular it shows how our expertise has:

  • substantially aided companies to predict reliability of new electronic systems before physical prototyping providing significant cost savings;
  • enabled companies to assess impact of new materials that address environmental legislation;
  • provided information to the Cutty Sark Trust in help maintain this national maritime treasure.

Submitting Institution

University of Greenwich

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering

Mass Spectrometry Imaging of Biological Tissue

Summary of the impact

Clench's research on Matrix Assisted Laser Desorption Ionisation - Mass Spectrometry Imaging (MALDI-MSI) technologies has impacted directly on pharmaceutical industry practice regarding studies of drug distribution studies in biological tissues, providing increased information, more rapidly. Companies have benefitted from long-term relationships with Clench's Bioanalysis Research Group and seek its expertise for consultancy purposes. Former members of Clench's group hold key positions in industry, implementing and further developing these technologies. Francese has had significant success in applying MALDI-MSI to analysis of latent fingermarks for forensic applications benefiting Home Office scientists and crime scene investigation units. Research advances in MALDI-MSI by Clench and Francese are patented and exploited via licensing.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Analytical Chemistry
Biological Sciences: Biochemistry and Cell Biology

Design for Manufacture and Reliability of Microsystems

Summary of the impact

The Computational Mechanics and Reliability Group at the University of Greenwich has been developing design and materials modelling expertise and tools for electronic manufacturing and reliability since the late 1990s. This case study details economic and environmental impacts and impacts on practitioners. In particular it shows how our expertise has:

  • substantially aided companies to assemble miniaturised electronic systems using environmentally friendly materials;
  • aided companies to predict reliability of new electronic systems before physical prototyping providing significant cost savings;
  • led to formation of spin out companies by our academic partners.

Submitting Institution

University of Greenwich

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering

Use of novel small specimen testing methods for improvements in power plant maintenance operations

Summary of the impact

A range of small specimen creep testing methods have been developed through research carried out at the University of Nottingham (UoN). These tests are being used in the following ways: RWE npower has used the impression creep test on approximately 180 samples taken from its power plants in the UK, France and Holland; AMEC has installed two impression creep test rigs for testing nuclear power plant materials for a range of EDF Energy power plants; Laborelec is using the small ring techniques for evaluating nickel based super alloys in turbine blades for clients in Belgium and Holland and the Electrical Power Research Institute (EPRI) has used the small specimen techniques, with the assistance of UoN, on power plant structures in the USA.

Submitting Institution

University of Nottingham

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Manufacturing Engineering, Materials Engineering

Transforming the Built Environment through Building Information Management (BIM)

Summary of the impact

Building Information Management (BIM) involves the creation and use of digital information about built assets. Mandated by UK and other governments because of its potential to reduce waste and optimise efficiency, its successful exploitation requires changes in construction technology and process. This research has had a transformational impact on both. Our technical research forms the basis of the National Library of BIM objects, as well as technological solutions and product developments for many organisations. Our work with UK and overseas governments has shaped industry's uptake of BIM. We have founded a centre of excellence to introduce BIM to practitioners and organisations, and created a commercial joint-venture consultancy company.

Submitting Institution

Northumbria University Newcastle

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Information Systems
Built Environment and Design: Building
Economics: Applied Economics

Filter Impact Case Studies

Download Impact Case Studies