Log in
Eutrophication results from excessive nutrient discharge to a water-body, reducing water quality. Eutrophication status must comply with the Urban Waste Water Treatment Directive (UWWTD). As part of a consortium, UHI developed, validated and researched a model (CSTT) capable of screening a water-body for eutrophication. The model was used to defend the UK in the European Court of Justice (2009), against proceedings brought by the European Commission alleging infraction of UK obligations under the UWWTD. The model proved that British waters were not harmfully impacted by eutrophication, sparing the UK government ~£6 billion to implement tertiary sewage treatment across England and Wales.
The intensification of food production, fossil fuel combustion and water consumption has led to substantial increases in the amount of nitrogen and phosphorus flushed from land to water. The accumulation of these nutrients in freshwaters, estuaries and the coastal zone has led to reductions in biodiversity, the loss of ecosystem services, and compromised water security. The UK is a signatory to a raft of international conventions and policies which require reductions in the flux of nutrients from land to the water and restoration of ecosystem health and services. To meet these obligations, policymakers need information on the scale of the problem, the sources of nutrients and the effectiveness of intervention measures.
Research in the Unit has directly addressed this need. It has provided robust scientific evidence of the scale of the problem and the sources of nutrient enrichment, and has provided the capability to test intervention and policy scenarios at field to national scales. It has fed directly into the development of monitoring approaches and mitigation measures now in use by the Environment Agency (EA) and Defra, informed the development of UK Government policy in relation to catchment management, and supported compliance with the EU Water Framework Directive, the renegotiation of the Gothenburg Protocol under the International Convention on Long-Range Transboundary Air Pollution, and reporting on discharges of nutrient pollution to the North East Atlantic under the OSPAR Convention.
Surface water runoff in urban areas makes a significant contribution to pollution of lakes and rivers, but historically is poorly addressed in catchment models. The School of Geography (SoG) developed a Geographic Information System (GIS) model and supporting database to quantify urban source area loadings of 18 common and priority pollutants. This knowledge improves catchment models and supports impact assessment and mitigation planning by environment managers. The research has been exploited on behalf of the Department for Energy, Food and Rural Affairs (DEFRA), the Welsh Assembly, and the UK water industry (UK Water Industry Research — UKWIR, and United Utilities). The research has had three distinct impacts: 1) its use addressing EU Water Framework Directive obligations; 2) its on-going influence on construction industry guidance; and 3) the commercialisation of its stormwater pollutant coefficient database for Sustainable Urban Drainage Systems (SUDS) planning software.
This work helps the UK and Ireland fulfil their statutory duties to assess and improve the state of freshwater ecosystems. EU legislation requires all water bodies to be managed sustainably to achieve a state close to that of the water body in its natural state. Research in Geography at Newcastle has pioneered the use of diatoms (microscopic algae) in lakes and rivers to describe the ecological characteristics of this natural state and developed models and software that allow deviation from this state to be assessed. The model and database are used by all water agencies in the UK and Republic of Ireland to fulfil their statutory requirements and have led to new environmental standards that indicate that over 40% of the total length of UK rivers is at risk from elevated phosphorus concentrations.
Research into the characteristics and remediation of mining pollution has had sustained and significant impacts (2008 - 2013) on environmental policy and practice at regional, national and international scales. Impacts, all with documentary evidence, include:
New health-evidence-based water quality criteria affecting over 24,000 EU bathing waters were implemented throughout the EU in 2012. These quantitative standards for microbial concentrations in sea water were based on WHO guidelines that were developed by Aberystwyth University's Centre for Research into Environment and Health (CREH) and founded on CREH's world-leading research. These standards (i) shape public policy by providing more rigorously-defined, quantitative health-based criteria, and (ii) improve implementation of environmental policy by facilitating the incorporation of real-time prediction of water quality, designed to provide `informed-choice' to bathers. Application of the standards on their own, i.e., without the prediction element, will result in the loss of 50% of UK's `Blue Flag' beach awards. With CREH's predictive element, however, the UK will both keep its blue flags and have higher standards of health protection. This prediction element is estimated by Defra to be worth between £1.4 and £5.3 billion to the UK economy over a period of 25 years following its initial implementation in 2012.
In 2012, cod stocks in the North Sea were assessed as having recovered almost to a level at which their viability is considered to be safe. This recovery followed 3 decades of progressive depletion to only 50% of the safety threshold of abundance. Achieving this recovery required the EU to abandon an earlier `closed area' policy banning fishing in selected areas of the North Sea, and instead enforce drastic cuts in overall activity on national fishing fleets. The policy change was prompted in part by predictions from mathematical modelling of cod populations by researchers at Strathclyde, showing that the `closed area' policy was unlikely to be an effective strategy for recovery. The recovery has so far restored £17 million in annual value to the fishery.
Limitations in public access to water environments for recreation are a longstanding source of stakeholder conflict in which previous policy initiatives have been ineffective. Our research has demonstrated how recreational access to inland waters can be increased through stakeholder capacity building and partnership working. In England and Wales the research led to changes in policy decisions for access to water, revised planning policy guidance, improved recreational access, the creation of 102 new jobs, and the modification of management practices by private and public bodies. In Europe the research has shaped new approaches for the management of small waterways in 11 countries.
Harmful Algal Blooms (HABs) are a serious risk to human health and the sustainability of the aquaculture industry. Research by Prof. Davidson has improved understanding of temporal and spatial trends in marine HABs and detection of toxins in farmed shellfish. Knowledge gleaned from this research has been adopted by the Food Standards Agency (FSA) in the design of the HAB Monitoring Programme for Scotland. Prof. Davidson leads the FSA HAB Monitoring Programme. The research findings also underpin the Crown Estate's finfish monitoring programmes and are used to advise aquaculture businesses on ways to reduce economic impact of HAB events.
Research at Loughborough University (LU) from 2000-2013 by Dr Wood and Professor Wilby has enabled Natural England, the Environment Agency of England and Wales, and the Environmental Protection Agency of Ireland, to implement European Directives (Water Framework, Habitats, and Groundwater). Benefits were accrued from the development of monitoring techniques and integrated modelling to understand long-term drivers of ecological status in river systems. This research has been translated into field standards and planning guidelines within the UK water sector. Moreover, this work helped other organisations such as World Wildlife Fund (WWF-UK) to raise public awareness of the consequences of household water use on freshwater environments.