Log in
Research performed by the University of Oxford has led to increased protection against meningococcal meningitis, through childhood immunisation in the UK and internationally. Around 600,000 infants each year receive meningococcal vaccines, which prevent up to 1,000 cases of meningitis per annum. Research into the immune responses to polysaccharide conjugate vaccines has changed policy by leading to the introduction of new meningococcal C vaccines in early childhood and booster vaccination in adolescents. Oxford University research has also led to the planned use of vaccines against serogroup B meningococcal disease, which have been licensed and recommended for the prevention of disease in high-risk individuals, and broader use is under consideration.
Disease severely limits the expansion of aquaculture. Studies on the immune control of infection have led, in association with industry, to the promotion of disease control utilising 03b2-glucan feed supplements. Knowledge has, via Keele Water, informed infection control strategies used by UK fish farmers. Studies have provided a legacy of young scientists trained by industry and supported by European funding. Advances made have been embraced in the education of veterinarians in Germany and fish production in Eastern Europe. Close collaboration with government bodies and learned societies has ensured that the work has been recognised by policy makers within the fisheries sector.
Since its discovery in the 1980s, avian metapneumovirus (AMPV) has spread in poultry populations worldwide with major adverse health and food security implications for commercial chickens and turkeys. Research at the University of Liverpool (UoL) led to the registration of a live vaccine in 1994 which has played a global role in AMPV control, thereby safeguarding the supply of poultry meat and eggs. Recent research and development at the UoL has identified key control measures, relating to vaccine application, vaccine selection, efficacy and safety, which have had a significant impact on poultry health and consequently, poultry producers and consumers. In particular, demonstration that live AMPV vaccines can revert to virulence, that vaccine type applied influences field protection and that continuous use of a single vaccine can influence circulating field strains, has resulted in UoL leading policy making with regard to current AMPV vaccine protocols.
Research by Professor Grassly and colleagues at Imperial College on the epidemiology of poliovirus and the efficacy of new vaccines has played a critical role in the thinking and strategy of the Global Polio Eradication Initiative (GPEI). This research has supported the introduction of new vaccines, guided the timing and location of vaccination campaigns and influenced polio `endgame' policy. This is documented in the GPEI Strategic Plan 2010-2012, where Imperial research informed 2 of the 4 `major lessons' concerning poliovirus epidemiology described in the executive summary that led to changes in the programme. The research has also informed our understanding of mucosal immunity induced by oral poliovirus vaccines, and led to two clinical trials of the potential role of inactivated vaccine to boost mucosal immunity. Results from one of these trials were used to support the recent World Health Organisations (WHO) recommendation for universal vaccination with inactivated vaccine following the switch to bivalent oral vaccine in routine programmes.
Heriot-Watt University (HWU) does essential research to underpin testing for market release of over 0.5 billion vaccine doses per annum to fish-farms across Europe. These vaccines prevent established and emerging fish diseases in some 25% of trout and 70% of sea bream and bass production in Europe. These diseases would otherwise compromise security and future expansion of important human food supplies. Vaccines are tested for the UK arm of Merck (USA), representing half the company's fish vaccine product range, four of which are in Merck's top 250 products worldwide. Furthermore, research at HWU on MSD Animal Health (MSDAH) ReleraTM vaccine efficacy against novel emerging strains of enteric red mouth (ERM) disease opened-up new markets in Eastern and Central Europe.
LSHTM researchers have developed four computer models to help decision-makers make evidence-based choices about new vaccines and vaccine schedules. These models analyse the public health impact and cost-effectiveness of different options under different assumptions and scenarios on a country-by-country basis. They are used by national immunisation managers and key decision-makers, international committees and partner organisations (e.g. the Global Alliance for Vaccines and Immunisation and the Bill & Melinda Gates Foundation). LSHTM's researchers have built on this research for WHO, informing global recommendations on vaccine timing and schedules.
Research at LSHTM has been central to the introduction of the Hib vaccine in developing countries. School staff were involved in the 1990s Gambia Hib vaccine trial, which demonstrated the impact of Hib vaccine on pneumonia. Through their work on the subsequent Hib Initiative, their research was instrumental in speeding up evidence-based decision-making for Hib vaccine introduction in a number of countries, mainly in Asia and Africa. The project has been an outstanding success, with Hib vaccine now introduced into 71 of the 73 countries eligible for GAVI Alliance support.
Viral infections pose a significant risk of long-term disease and death to cats. In Europe alone, over 30 million domestic cats are vaccinated each year against three core pathogenic viruses. Research performed at the University of Glasgow has systematically supported the development of key technologies against major feline viral diseases. This work has delivered incremental but wide-reaching benefits to veterinary healthcare and animal welfare by providing: (i) reagents used in the diagnostic industry; (ii) viral screening services for big cat conservation programmes; (iii) developmental input into the creation of one of the most efficacious and widely used vaccines against feline leukaemia virus; (iv) testing of feline vaccines for efficacy and safety; and (v) development of best practice guidelines and training for veterinary practitioners on feline viruses.
Research conducted by LSHTM has informed the delivery of a 30-year WHO strategy aimed at reducing the devastating burden of liver cancer in Africa and least developed countries in other regions. Studies evaluating the effectiveness of the Gambia Hepatitis Intervention Study (GHIS) - the only randomised trial of a hepatitis B vaccine with a disease endpoint in Africa - have shaped current WHO policy recommendations for vaccinations against the virus, enabling WHO to advise against the need for a booster programme, and protecting governments in the less developed world from significant additional expenditure.
A trial of a pneumococcal conjugate vaccine (PCV) coordinated by Greenwood (LSHTM) and conducted in Gambian infants, showed a significant reduction in invasive pneumococcal disease, severe pneumonia, hospital admissions and deaths in vaccinated children. These results played an important role in encouraging WHO to recommend the introduction of a PCV into the routine immunisation programme of all countries with a high child mortality. Fifty-one GAVI eligible countries have now introduced, or made a commitment to introduce, a PCV into their routine infant immunisation programme with the consequent saving of many young lives.