Similar case studies

REF impact found 23 Case Studies

Currently displayed text from case study:

Applied Acoustics in the built environment and its broader uptake

Summary of the impact

Applied acoustics in the built environment and its broader uptake is focused on the development and commercial adoption of techniques and technologies resulting from research in applied acoustics, demonstrating the following impact:

  • Developing standard methodologies in the areas of Rain Noise, Building Envelope design, Low Frequency Noise, Structure-borne Sound, Surface Acoustic Diffusion and Multi-porous materials;
  • The adoption of standard practice in local and national government bodies in the UK and internationally, in test houses, the construction industry, consultancies and extending into automotive and aerospace industries;
  • Commercial application of technologies deriving from the research in reducing environmental noise, improving environmental and performance acoustics, bringing economic and environmental benefit.

Submitting Institution

University of Salford

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Civil Engineering, Materials Engineering, Mechanical Engineering

Sustainable strategies for noise mitigation through improved assessment of noise impact and enhanced design of noise barriers

Summary of the impact

Research at the University of Bradford has resulted in more accurate and efficient predictions of traffic sound propagation and faster determination of sound reflection effects, enabling more effective design and positioning of noise barriers. Software derived from our research is used in 40 countries to map traffic noise and plan evidence-based targeting of Noise Reduction Devices (NRDs), thus increasing efficiency and sustainability. Beneficiaries include the public, through improved quality of life from reduced noise pollution from transport and wind turbine sound, and governments and public administrations through policy tools to influence noise management. The reach of our research is demonstrated by its incorporation into national and EU-wide policy and guidance on sustainability in design and use of NRDs.

Submitting Institution

University of Bradford

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Mechanical Engineering
Economics: Applied Economics

Development of acoustic Robust Details enhancing building performance and wellbeing of occupants

Summary of the impact

The Building Performance Centre at Edinburgh Napier University led by Professor Sean Smith was the first to research `robust details' for sound insulation during 2001-2004. This resulted in a government consultation, new regulatory approach, higher quality of life for home occupants, multi-stakeholder engagement and knowledge exchange via a Design Handbook with 4,700 subscribers. Since 2008, over 300,000 robust detail homes have been built, noise complaints have fallen four-fold, site compliance rates have shifted from 35% to 99%, Smith leads a European 32-country robust design group and 16 patented products are manufactured in the UK.

Submitting Institution

Edinburgh Napier University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Engineering Design

Identification and Active Control of Multiple Sources of Sound

Summary of the impact

Work at the Institute of Sound and Vibration Research (ISVR) has led to a sophisticated new understanding of a number of multiple-input multiple-output (MIMO) problems in acoustics. The effects are wide ranging, attracting heavyweight industry sponsors and driving valuable new innovations in home entertainment, construction, aviation and defence. In particular, research has led to the deployment of new "active" methods for controlling noise and vibration within aircraft. Systems have been installed in over 200 propeller aircraft since January 2008, giving a total number of 1000 aircraft treated to date and benefitting 177 million passengers worldwide. Noise reduction systems based on patents resulting from the unique ISVR methods are being developed for maritime use by BAE Systems. The underpinning science has significantly cut the cost of noise tests on Rolls-Royce jet engines, saving US$4 million to date and reducing their environmental impact. It has led to the development of mass-produced systems for living-room 3D sound, global sales of which have reached US$7.2 million.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Mechanical Engineering
Technology: Communications Technologies
Medical and Health Sciences: Neurosciences

Developing tools and products for designing better urban sound environments

Summary of the impact

Theoretical and experimental research on urban sound environments has been carried out by Professor Kang and his team at the University of Sheffield since 1999. This includes acoustic theories and models for urban sound propagation, soundscape theory and framework, and acoustic theories for sustainable building elements. Consequently, they have developed design guides/ tools that have become common standards in professional practice; invented sustainable low-noise products that have led to commercial outputs; organised networks and workshops that have set up the practice agenda for designing better urban sound environments; and delivered keynote presentations to international audiences of planning professionals and government policy-making organisations.

Submitting Institution

University of Sheffield

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Political

Research Subject Area(s)

Mathematical Sciences: Statistics
Environmental Sciences: Environmental Science and Management
Built Environment and Design: Design Practice and Management

Sanitary Soundscapes: listener-centred approach to the noise effects of ultra-rapid hand dryers on vulnerable subgroups

Summary of the impact

In research that challenges the dichotomy of music/ noise, Drever has investigated the properties and subjective effects of the high volumes produced by ultrafast hand dryers, finding that it is highly aversive for vulnerable groups including people with dementia, sensory impairments, and autistic spectrum disorders, in some cases exacerbating their social avoidance. These effects have been communicated to the public, industry professionals, and policymakers through a combination of creative art works and presentations of the research findings in varied public settings. They have been widely reported in the international media, via both general interest and specialist publications and programmes. He has worked closely with the UK's Noise Abatement Society and with industrial designers, who have welcomed his input to helping them improve hand dryer design.

Submitting Institution

Goldsmiths' College

Unit of Assessment

Music, Drama, Dance and Performing Arts

Summary Impact Type

Societal

Research Subject Area(s)

Medical and Health Sciences: Neurosciences, Public Health and Health Services

The reduction of sound from aircraft engines

Summary of the impact

In response to many EU directives (e.g. 89/629/EEC, 2002/30/EC), and to the threat of financial penalties, the aircraft industry has long considered it a matter of the utmost importance to develop tools for the reduction of aircraft noise. Chapman's ray theory of aeroengine noise, created and developed in 1994-2000, provided such a tool. The impact of this work has extended through aircraft industry giants such as Rolls-Royce to consumers and the general public worldwide, because of its influence on the design of quieter aircraft.

Following application of the same theory to broadband underwater acoustics, the impact now extends to the government's plans for the next generation of nuclear submarines. This is a £25 billion project to design and build the Successor class, to replace the Vanguard class of Trident submarines. Chapman's ray theory has been used in the current Assessment Phase leading to Main Gate in 2016, when the Government will decide on production.

Submitting Institution

Keele University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences
Engineering: Mechanical Engineering, Interdisciplinary Engineering

Development of thin membrane isolators for attached housing enhancing building performance, wellbeing of occupants, resource efficiency and reducing costs.

Summary of the impact

Edinburgh Napier University was the first to develop thin membrane vibration isolators (2005) to allow party walls in new attached homes to be built off raft foundations. This led to the first Proof of Concept for the construction industry (2008) for perimeter isolators for blockwork apartments. Several patents have been granted leading to nine products manufactured by Icopal-Monarfloor, based in Manchester (UK), part of the Icopal global group. Over 15,000 homes have been built using these innovative isolators, delivering cost savings to the industry of over £80 million resulting in economic, environmental and quality of life benefits.

Submitting Institution

Edinburgh Napier University

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering

Improving Public Understanding of the Effects of Aircraft Noise

Summary of the impact

Research undertaken at the University of Manchester (UoM) considers the association between aircraft noise, human health and everyday life. In partnership with an eminent Japanese acoustic scientist, the issue of noise emanating out of the Kadena US airbase (Okinawa Island) and Tokyo Narita Airport was addressed through the creation of an innovative exhibition. The key impact is that local government officials in Japan used the exhibition to enhance their own and citizen groups' understanding of acoustic science. This has helped to breach a long-standing impasse in negotiations over aircraft noise, involving citizens, local authorities, the military and the private sector. In addition, the research has been utilised by the makers of a leading sound-monitoring device (Nittobo), and the multimedia exhibition has been displayed and discussed outside Japan.

Submitting Institution

University of Manchester

Unit of Assessment

Anthropology and Development Studies

Summary Impact Type

Societal

Research Subject Area(s)

Engineering: Mechanical Engineering
Medical and Health Sciences: Neurosciences, Public Health and Health Services

Research Centre for Creative Research in Sound Arts Practice (CRiSAP) at the University of the Arts London

Summary of the impact

The Research Centre for Creative Research in Sound Arts Practice (CRiSAP) works to develop, extend and support the emerging disciplinary field of sound arts, and has played a role in defining, scoping and shaping contemporary sound arts practice. This case study demonstrates impact on the creative community, museums and galleries, and the general public, with work reaching a wide audience and developing a greater recognition and understanding of sound and sound arts.

Submitting Institution

University of the Arts London

Unit of Assessment

Art and Design: History, Practice and Theory

Summary Impact Type

Cultural

Research Subject Area(s)

Psychology and Cognitive Sciences: Psychology
Studies In Creative Arts and Writing: Film, Television and Digital Media
Language, Communication and Culture: Linguistics

Filter Impact Case Studies

Download Impact Case Studies