Similar case studies

REF impact found 69 Case Studies

Currently displayed text from case study:

Nanoforce Technology Ltd. Assists in the Development of Materials and Processes for Industry

Summary of the impact

Nanoforce Technology Ltd. is a spin-out company wholly owned by QMUL, active in the field of polymeric and ceramic materials. Bridging the gap between academic research and industrial applications, Nanoforce has done business with over 100 companies since 2008, providing the key research expertise and specialist facilities to enable the development of new materials and commercial products, including Sugru® a room temperature vulcanizing silicone rubber, Zelfo® a self-binding cellulose material, and BiotexTM a range of high-performance yarns, fabrics and pre- consolidated sheets based renewable resources such as PLA and natural flax fibres. Nanoforce has been promoting the development and commercialisation of spark plasma sintering (SPS) since 2006, which resulted in Kennametal recently opening the first commercial SPS facility in the UK to produce advanced ceramic armour. Nanoforce's clients have included large multi-nationals such as DSM, Dow Chemical, General Electric, SABIC, L'Oreal, Shell, Sibelco, governmental agencies such as Defence Science and Technology Laboratory (Dstl), and a large number of SME's.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Optimising materials interfaces: Supporting the growth of an SME

Summary of the impact

Since the mid-1990s, the Materials and Structures Research Group has been conducting research into materials-joining processes, including metal-ceramic joining for high-temperature applications. The group's research on metal-ceramic interfacial relationships and metal-ceramic joining subsequently assisted Cambridge-based C4 Carbides to optimise metal-to-diamond brazing and develop cutting tools with improved quality and longer lifetimes. Since 2010 the company has also [text removed for publication]

This continuing collaboration has helped C4 Carbides secure a TSB smart award and begin its strategic shift from niche SME to mainstream supplier.

Submitting Institution

University of Hertfordshire

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Ilika plc: Driving Global Innovation in Next Generation Materials

Summary of the impact

The unique application of combinatorial chemistry in materials science at Southampton has directly underpinned the success of University spin-out, Ilika Technologies. Since 2008, the breadth of applications of the research has allowed Ilika:

  • to form a partnership, worth around £4m, with Toyota in the development of battery materials for electric vehicles
  • to optimise new phase change memory materials now used by NXP in embedded memory applications, and
  • to create and sell a subsidiary, Altrika Ltd, that has provided cell-based skin regeneration therapies to 50 severe burn victims.

Between 2008 and 2012, Ilika enjoyed considerable growth, doubling employment to 35 staff, increasing turnover by approximately 25% annually, and floating on the AIM with a market capitalisation of £18.7 million.

Submitting Institution

University of Southampton

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry

Lightweight Self-Reinforced Plastics for Ultimate Recyclability

Summary of the impact

Research carried out by Prof. Ton Peijs and colleagues has led to significant breakthroughs in engineering plastics: PURE® and its licensed Tegris® technology, which are lightweight self- reinforced alternatives to traditional polypropylene (PP) composites such as glass-fibre or natural- fibre-reinforced PP. Environmentally friendly and 100% recyclable, these strong and ultra-light self- reinforced plastics have been successfully used across a number of applications, from suitcases and sports gear to protective armour and automotive panels, with impressive results. When used for car, truck and van components, they have been shown to help lower exhaust emission levels and increase fuel economy.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

ECRE: Composites to Industry led Consortium – the NIACE Centre

Summary of the impact

Ulster research groups in the fields of composites and metal forming have had a long-term and fruitful engagement with major industries such as Caterpillar (FG Wilson), Rolls Royce and Bombardier. Since 2008 this has resulted in new patented technologies, significant cost/performance improvement in manufacturing, the delivery of on-site industrial training, the formation of spin-out companies and the establishment of the £6m N. Ireland Advanced Composites and Engineering Centre with currently 10 member companies. In particular, Ulster research has been at the heart of patented Bombardier processes which underpinned their strategic entry into the commercial narrow body aircraft market which is worth $43billion per annum globally. The C Series wing programme, which utilises composites, employs 800 people directly in Belfast at full production, with a further 2,000 employed in the supply chain. As of today, Bombardier has global orders and commitments for 388 C Series aircraft, which include firm orders for 177 of the new airliner.

Submitting Institution

University of Ulster

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Materials Engineering, Mechanical Engineering

Realising innovative and adaptive product design and optimisation through an integrated materials and modelling system

Summary of the impact

The investigators of this impact case study have utilised their expertise in materials engineering, theoretical/numerical modelling and product development to achieve significant economic, social and environmental impacts in a range of fields through developing a systematic methodology for innovative product design and optimisation. Through several industrial projects and collaborations, significant impacts have been witnessed including new products creating several million pounds in revenue annually for businesses in different sectors and green manufacturing technologies in repair and reclamation of components. All the described impacts were results of investigation in the Mechanical Engineering and Materials Research Centre (MEMARC) over the assessment period.

Submitting Institution

Liverpool John Moores University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Light-weighting of automotive and aerospace transport

Summary of the impact

The automotive and aerospace industries are keen to reduce their environmental impact and so have looked to move to lightweight materials. This creates issues in terms of joining, using and disposing of dissimilar materials. Oxford Brookes has therefore worked with national and multi-national companies in the adhesive, materials, automotive and aerospace industries to try to solve these problems. This has resulted in high quality research publications, innovative test equipment, improved numerical methods, novel designs, design guidelines, manufacturing procedures, British Standards, patents, commercial products and further funding. The impact of the work has global safety, environmental and economic benefits with multi-national aerospace and automotive companies implementing the results in current developments.

Submitting Institution

Oxford Brookes University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Creation of industrial products, processes and company growth from research on highly structured materials for gas adsorption and separation

Summary of the impact

Research at the University of Bath on highly structured materials for adsorbing and separating gases has created business and economic impact via:

  • Inward investment of £2.5 million in a University spin-out small and medium enterprise (SME), n-psl (Nano-Porous Solutions Ltd), whose business is developing new products for energy efficient gas separation for environmental and medical applications. Turnover of the new company is now > £1 million pa and growing, and has created significant inward investment opportunities from the USA for two of n-psl's customers, Parker Hannifin Manufacturing and Ultra Electronics, in military and personnel protection applications.
  • Improvement to existing products of an established SME (MAST Carbon International Ltd). Industrial testing of a new process, co-invented by MAST and the University, which contains the improved products; the new process is for specific gas separation aimed at meeting legislative emission limits, creating healthier workplaces, and recovery and reuse of valuable resources.
  • Creation of 28 new jobs, 24 within n-psl and four within MAST, together with the enhanced security of three within Parker Hannifin Manufacturing in the UK and several others at MAST.

[Comment: Although beyond the cut-off date for impact achievement, as at 31 October 2013 n-psl had been acquired by the FTSE 100 listed international engineering group, IMI plc.]

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering
Medical and Health Sciences: Public Health and Health Services

Informing public understanding of nanoscience and materials for energy applications (CS5)

Summary of the impact

The School of Chemistry has a long track record of pioneering and innovative outreach activities aimed at stimulating public interest and understanding in chemistry research and its societal impact. During the period 2008-2013 it successfully communicated to a wide-ranging audience the significance of a series of "firsts" in the areas of nanoscience and materials for energy applications. Using YouTube, Royal Society Summer Science Exhibitions, roadshows and science festivals, this award-winning approach has engaged hundreds of thousands through digital media and thousands more face-to-face, raising public awareness, inspiring interest in science and delivering educational benefits for students and teachers alike.

Submitting Institution

University of Nottingham

Unit of Assessment

Chemistry

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Solid Oxide Fuel Cells for High Efficiency Domestic Combined Heat and Power

Summary of the impact

Patents arising from EPSRC funded research by Kilner (PI) and Steele, Atkinson and Brandon (CoI's) resulted in the development of a unique metal-supported solid oxide fuel cell and formation of the spin out company Ceres Power in 2001. Ongoing development at Ceres Power has been supported by further underpinning research by the Fuel Cell group in the Department of Materials at Imperial and has produced a world-leading SOFC fuel cell module which provides the core component for a variety of applications and fuels, including: micro combined heat and power (mCHP); mobile auxiliary power units (APU); and remote power. Ceres Power has developed a mCHP unit containing the core module for residential applications powered by natural gas in collaboration with British Gas and Bord Gais (Ireland). The unit has an electrical efficiency of 45% and total efficiency of 90%. It reduces the energy bill by 25%, and saves around 1.5 tonnes of CO2 per annum per household. The company is AIM listed and in 2011 had 160 employees, with a technology centre in Crawley and a manufacturing plant in Horsham. Over the period of the review the company has directly provided approximately 600 man years of employment in the UK.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Other Chemical Sciences
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies