Similar case studies

REF impact found 26 Case Studies

Currently displayed text from case study:

Protecting and restoring aquatic systems

Summary of the impact

The primary mission of the Centre for River Ecosystem Science (CRESS: http://www.cress.stir.ac.uk/index.html) is to build and translate scientific evidence into advice to end-users and policy makers in river management, both nationally and internationally. Site-based advice, design and monitoring have been provided to 55 projects, including award-winning river engineering schemes. Independently, our research in community ecology, fluvial geomorphology and agricultural pollutants has supported an outstanding contribution to the UKs response to the key EU Environmental Directives — Water Framework, Flooding, Species & Habitats and Bathing Waters. We have developed the official tools that are now used to determine the status of freshwaters and structure catchment management plans, and trained others in their use, have pioneered risk assessments and modelling of nutrient, pathogen or carbon losses, publicised their effects, scoped mitigation options though engaging with end-users, and steered the pan-European comparison of bio-assessment methods that now underpins common water policy.

Submitting Institution

University of Stirling

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

2. Delivering UK policy for river conservation and management

Summary of the impact

New approaches to analysing and modelling water systems, developed at Cardiff, have driven national policy changes to improve the proportion of fully functioning water ecosystems in the UK. UK Government, Welsh Government and a range of NGOs have adopted these new approaches, which replace traditional descriptive methods with experimental, analytical and modeling techniques for understanding water ecosystems.

These approaches have been used to develop the water-related component of the National Ecosystem Assessment. This document has directly impacted on UK river management policy, forming the basis of two Defra White papers, `Natural Choice' and `Water for Life', underpinning Welsh Government's Natural Environment Framework and informing the work of a range of NGOs.

Submitting Institution

Cardiff University

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

UK and Ireland benefit from improved assessment of water quality in rivers and lakes using new diatom-based tools

Summary of the impact

A team at Bristol University has played a central role in the development of new methods for assessing water quality in rivers and lakes. These are making it possible for the water industry to more reliably assess water quality and identify sites where remedial measures must be applied to meet the new standard of `good ecological status' as required by the European Union Water Framework Directive (WFD), which passed into UK law in 2003. The innovative, diatom-based tools were used in 2008 and 2009 to assess all targeted surface waters (rivers and lakes) in the UK and Ireland, leading to massive investment in infrastructure. This has opened up the prospect of higher quality water in lakes and rivers - something that the public and environmental organisations demand. Over the next few decades, the investment will bring an estimated benefit of £200 million to residents in England and Wales alone.

Submitting Institution

University of Bristol

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Biological Sciences: Ecology
Engineering: Environmental Engineering
Medical and Health Sciences: Public Health and Health Services

Case 6 - Improving national surface water quality using an urban non-point pollution model and supporting database

Summary of the impact

Surface water runoff in urban areas makes a significant contribution to pollution of lakes and rivers, but historically is poorly addressed in catchment models. The School of Geography (SoG) developed a Geographic Information System (GIS) model and supporting database to quantify urban source area loadings of 18 common and priority pollutants. This knowledge improves catchment models and supports impact assessment and mitigation planning by environment managers. The research has been exploited on behalf of the Department for Energy, Food and Rural Affairs (DEFRA), the Welsh Assembly, and the UK water industry (UK Water Industry Research — UKWIR, and United Utilities). The research has had three distinct impacts: 1) its use addressing EU Water Framework Directive obligations; 2) its on-going influence on construction industry guidance; and 3) the commercialisation of its stormwater pollutant coefficient database for Sustainable Urban Drainage Systems (SUDS) planning software.

Submitting Institution

University of Leeds

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Engineering: Environmental Engineering

Transposition of European policy into practice: Conservation and management of riverine ecosystems

Summary of the impact

Research at Loughborough University (LU) from 2000-2013 by Dr Wood and Professor Wilby has enabled Natural England, the Environment Agency of England and Wales, and the Environmental Protection Agency of Ireland, to implement European Directives (Water Framework, Habitats, and Groundwater). Benefits were accrued from the development of monitoring techniques and integrated modelling to understand long-term drivers of ecological status in river systems. This research has been translated into field standards and planning guidelines within the UK water sector. Moreover, this work helped other organisations such as World Wildlife Fund (WWF-UK) to raise public awareness of the consequences of household water use on freshwater environments.

Submitting Institution

Loughborough University

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

Assessment, restoration and management of urban rivers

Summary of the impact

Angela Gurnell's research on the geomorphology, hydrology and plant ecology of urban water courses has led to the development of important new tools for the biophysical assessment and improved management of urban rivers. Known as the Urban River Survey (URS), these tools are accessed by the Environment Agency and River Trusts across London, and their application is supported with workshops and guidance provided by Gurnell and her team. The URS has been used to deliver morphological quality indicators for rivers across London; to appraise river restoration schemes; to develop catchment management plans; and to assess long-term changes in rivers. It is currently being developed to quantify and set targets for river improvement schemes in relation to their impact on river ecosystem services. Gurnell's work has made a distinct contribution to urban river improvements in Britain and Europe, particularly through her leadership in developing a European framework for assessing hydromorphology.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

Transforming River Management & Restoration Through Applied Geomorphology

Summary of the impact

Research by the University of Southampton into river processes and restoration has contributed significantly to the adoption of fluvial geomorphology as a tool for river management. The research quantified for the first time, the cost of sediment management in rivers to the UK economy and environment, arguing that improvements could be achieved by applying fluvial geomorphology. The research developed new evidence, tools and training that were adopted by river management agencies and consultants for the scoping, assessment and planning of projects. This has resulted in cost-savings through reduced river maintenance, improved river environments, and the creation of a new employment market for graduates with geomorphological training.

Submitting Institution

University of Southampton

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

Remediation and development of the Manchester Ship Canal and Salford Quays

Summary of the impact

The 33km Manchester Ship Canal (MSC) was one of the most polluted waterways in Europe following the industrial revolution. Ecosystems were destroyed and odorous sediment rafts prevented the redevelopment and regeneration of the surrounding water front areas that had an estimated real estate value of £500m.

The research led by White established the cause and extent of water pollution in the upper MSC and Salford Quays. Critically this research allowed evidence based restoration programmes to be initiated that have rejuvenated the waterway and Salford Quays areas. This improvement in water quality was the essential first step in the long term development of Salford Quays that has seen approximately 2,000 homes being built and the arrival of 900 businesses that employ over 35,000 people.

Submitting Institution

University of Manchester

Unit of Assessment

Biological Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Oceanography, Physical Geography and Environmental Geoscience
Engineering: Environmental Engineering

The Open Air Laboratories (OPAL) project and its contribution to raising public awareness of, and participation in, freshwater science

Summary of the impact

The OPAL Water Centre at UCL, funded to a total of £732k, developed an innovative educational national water survey programme accessible to people of all ages and abilities, promoted especially within disadvantaged communities. Of the more than 45,000 participants, 17% were from 'hard to reach' communities. The Survey encouraged greater understanding of the aquatic environment through public participation in water quality and aquatic biodiversity assessment and used high-quality research to link the community, voluntary and statutory sectors by creating a channel through which locally derived information could lead to site-specific management as well as national and international policy.

Submitting Institution

University College London

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Biological Sciences: Ecology
Engineering: Environmental Engineering

Changing Water Policy in the Republic of Ireland

Summary of the impact

Research undertaken by Professor Phil Jordan on nutrient pollution from land to waters has led to significant changes in government policy and in expectations for Water Framework Directive (WFD) and Waste Directive (WD) compliance in Ireland. The WFD is European wide legislation requiring that all water-bodies should be of at least good ecological status by 2015. His research has provided unequivocal scientific evidence that bio-physical lag times preclude the achievement of WFD water quality targets from diffuse source pollution by 2015. This has led to targets for good water quality in all River Basin Management Plans being extended without threat of European fines. Further, inclusion of Jordan's research on the specific environmental risk of rural point source pollution in assessments of septic tank system risk has resulted in the overturning of a European Court ruling under the Waste Directive, and the consequent lifting of daily fines of €19,000.

Submitting Institution

University of Ulster

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management, Soil Sciences

Filter Impact Case Studies

Download Impact Case Studies