Log in
Current Defra policy on river catchment management has been informed by our interdisciplinary research over a 10-year period, much of it addressing the challenges posed by the EU Water Framework Directive. Outcomes from our research are reflected in the policies proposed in the 2011 Water for Life White Paper and also in the multi-million pound investment plans of water companies. We have also influenced a whole-community framework for catchment management in the UK that was piloted in 2011 and has now been extended to 100 catchments across England.
Good quality water is essential for life on earth. The `Centre for Intelligent Environmental Systems' (CIES) has developed computer-based solutions for the assessment of river water quality by environmental agencies, working to improve the quality. CIES research has informed discussions and decisions of the UK Technical Advisory Group for the Water Framework Directive (UKTAG WFD). UKTAG WFD have selected the WHPT (Walley, Hawkes, Paisley & Trigg) method, for assessing river water quality throughout the UK, in the context of river management to meet the targets set in the Water Framework Directive (Directive 2000/60/EC from the European Union), which the UK government signed up to in 2000 (Beneficiaries: UKTAG WFD; Environment agencies; The public). Indirect impacts can also be attributed to CIES research, as it enables improvements of river quality, which triggers positive impacts on the natural environment, public health and quality of life (Beneficiaries: The public). CIES software has also been released to environment agency biologists as second opinion tools, thereby resulting in improved delivery of the public service provided by these biologists, when they use the software (Beneficiaries: Environment agencies; Environment agency biologists; The public).
The intensification of food production, fossil fuel combustion and water consumption has led to substantial increases in the amount of nitrogen and phosphorus flushed from land to water. The accumulation of these nutrients in freshwaters, estuaries and the coastal zone has led to reductions in biodiversity, the loss of ecosystem services, and compromised water security. The UK is a signatory to a raft of international conventions and policies which require reductions in the flux of nutrients from land to the water and restoration of ecosystem health and services. To meet these obligations, policymakers need information on the scale of the problem, the sources of nutrients and the effectiveness of intervention measures.
Research in the Unit has directly addressed this need. It has provided robust scientific evidence of the scale of the problem and the sources of nutrient enrichment, and has provided the capability to test intervention and policy scenarios at field to national scales. It has fed directly into the development of monitoring approaches and mitigation measures now in use by the Environment Agency (EA) and Defra, informed the development of UK Government policy in relation to catchment management, and supported compliance with the EU Water Framework Directive, the renegotiation of the Gothenburg Protocol under the International Convention on Long-Range Transboundary Air Pollution, and reporting on discharges of nutrient pollution to the North East Atlantic under the OSPAR Convention.
For over 40 years, the Urban Pollution Research Centre has undertaken pioneering work in understanding the sources, behaviour and fate of urban diffuse pollution and its mitigation using sustainable urban drainage systems (SUDS). Relevant impacts claimed here include the adoption of SUDS into UK practice and legislation, the role of SUDS as key components in achieving EU Water Framework Directive (WFD) requirements and the embedding of our research within national best practice guidelines. In response to recent policy drivers, we are collaborating with Arup to commercialise SUDSloc and are informing policy developments in the fields of diffuse pollution mitigation and urban ecosystem services.
Research undertaken by Professor Phil Jordan on nutrient pollution from land to waters has led to significant changes in government policy and in expectations for Water Framework Directive (WFD) and Waste Directive (WD) compliance in Ireland. The WFD is European wide legislation requiring that all water-bodies should be of at least good ecological status by 2015. His research has provided unequivocal scientific evidence that bio-physical lag times preclude the achievement of WFD water quality targets from diffuse source pollution by 2015. This has led to targets for good water quality in all River Basin Management Plans being extended without threat of European fines. Further, inclusion of Jordan's research on the specific environmental risk of rural point source pollution in assessments of septic tank system risk has resulted in the overturning of a European Court ruling under the Waste Directive, and the consequent lifting of daily fines of €19,000.
Angela Gurnell's research on the geomorphology, hydrology and plant ecology of urban water courses has led to the development of important new tools for the biophysical assessment and improved management of urban rivers. Known as the Urban River Survey (URS), these tools are accessed by the Environment Agency and River Trusts across London, and their application is supported with workshops and guidance provided by Gurnell and her team. The URS has been used to deliver morphological quality indicators for rivers across London; to appraise river restoration schemes; to develop catchment management plans; and to assess long-term changes in rivers. It is currently being developed to quantify and set targets for river improvement schemes in relation to their impact on river ecosystem services. Gurnell's work has made a distinct contribution to urban river improvements in Britain and Europe, particularly through her leadership in developing a European framework for assessing hydromorphology.
Managing and conserving the marine environment requires defining what constitutes healthy ecosystems and understanding the effects of pollution. Edinburgh Napier University (ENU) research defining `undesirable disturbance' allowed the United Kingdom (UK) to mount a successful defence at the European Court of Justice in 2009 against alleged infraction of UK obligations under the Urban Waste Water Treatment Directive. This saved UK taxpayers £6 billion in estimated additional costs. The European Union (EU) Marine Strategy Framework Directive uses a definition of good status for pelagic habitats derived from work at ENU, which benefits policy makers and marine stakeholders by facilitating the establishment of Marine Protected Areas.
Eutrophication results from excessive nutrient discharge to a water-body, reducing water quality. Eutrophication status must comply with the Urban Waste Water Treatment Directive (UWWTD). As part of a consortium, UHI developed, validated and researched a model (CSTT) capable of screening a water-body for eutrophication. The model was used to defend the UK in the European Court of Justice (2009), against proceedings brought by the European Commission alleging infraction of UK obligations under the UWWTD. The model proved that British waters were not harmfully impacted by eutrophication, sparing the UK government ~£6 billion to implement tertiary sewage treatment across England and Wales.
Over a million urban dwellers in several developing countries are accessing water services as a result of research undertaken at Loughborough University. National Water and Sewerage Corporation (NWSC), Uganda's main urban water utility, applied the research findings to improve service quality, and extend piped water supply to the previously un-served. During 2008-2011, over 500,000 additional urban residents accessed piped water supply of improved bacteriological and physico-chemical quality — resulting in significant enhancement of health and quality of life (particularly of children). Furthermore, the research benefits were transferred to other countries, through the work of NWSC's External Services Department, extending the reach to other countries including Kenya, Tanzania, India and Zambia.
The OPAL Water Centre at UCL, funded to a total of £732k, developed an innovative educational national water survey programme accessible to people of all ages and abilities, promoted especially within disadvantaged communities. Of the more than 45,000 participants, 17% were from 'hard to reach' communities. The Survey encouraged greater understanding of the aquatic environment through public participation in water quality and aquatic biodiversity assessment and used high-quality research to link the community, voluntary and statutory sectors by creating a channel through which locally derived information could lead to site-specific management as well as national and international policy.