Log in
Zinwave Ltd has introduced wideband distributed antenna systems (DAS) to the global marketplace, with systems deployed in Europe, the USA, Australia, China and the Middle East. Zinwave, a company founded to exploit the underpinning research, [text removed for publication] employs 25 staff. The first sales were recorded in 2008 and Zinwave's annual revenue has grown tenfold since then, [text removed for publication]. The Zinwave 3000 system is the only DAS on the market able to carry a wide range of wireless services on a single optical fibre and the company has built up a global network of more than 40 partners to integrate its systems, which are used in hospitals, stadiums, airports and power stations, among others. In 2012, Verizon, the USA's largest mobile operator, selected Zinwave to supports its 4G network rollout in the USA.
We have developed enabling technologies for the defence, automotive and identification industries, the health service and the wider community where our contributions enable end users to maximise performance for a given cost. Work on Frequency Selective Surfaces (FSS) produced sub-reflectors for aerospace (BAE Systems — mm/sub-mm satellite radiometers for earth observations). Small antenna and RFID work led to new products in the automotive industry (Harada Industries), on-line fuel management systems (Timeplan Ltd), wireless smoke detectors (EMS Group), connectors (Martec), antennas (Panorama Antennas Ltd) and for Digital TV (Mitsubishi). Millimetre-wave over fibre systems linked antennas have supported the acquisition of new astronomical data, through the international ALMA (Atacama Large Millimetre Array) project, facilitating deeper public understanding of the universe.
WiFi technologies are integral to our internet-connected lives. Most of the world's wireless data passes over one of the global WiFi standards. For more than 20 years the University's Communication Systems & Networks (CS&N) Group has contributed towards the development of these technologies, and to products that conform to them.
The WiFi standards are vital since they ensure that computers, mobile phones, set-top boxes and tablets all use the same waveforms and protocols to wirelessly connect to the Internet. They ensure inter-operability between different products and manufacturers.
CS&N pioneered the use of multicarrier modulation and multiple antenna (MIMO) technologies. These underpin the current WiFi standards (802.11g/n), ratified in 2003/2009. Research on wireless and video communications led, via spin-out ProVision Communications, to a range of robust wireless-video products for high definition video transmission in the home. These products are now manufactured and sold by Global Invacom.
In partnership with Farncombe, the Group has developed a defacto WiFi test standard. This combines the Group's rigorous WiFi antenna validation & verification measurements with its system level in-home modelling and measurement tools. [text removed for publication]. To date, more than five million WiFi routers have benefited from the University's WiFi test process.
The world's longest high capacity terrestrial commercial communications system, now deployed worldwide, was developed from Aston University's pioneering research on the concept of dispersion managed solitons. The concepts and expertise from this research were used to develop and implement the associated system design for high capacity (1Tb/s) WDM (wavelength division multiplexing) transmission over 1000s of kilometres. Commercial development was led by Prof Doran and the core team from Aston who left the University to found Marconi-Solstis, a part of Marconi plc. Prof Doran and other key members of this team have since returned to Aston The system, now owned by Ericsson, (but still called Marconi MHL3000) has current annual sales of order $100M, and employs hundreds of people worldwide.
High power fibre laser research undertaken at the University of Southampton has led to the creation of a new business sector in the generation of highly efficient and highly practical fibre laser technology. This has revolutionised areas of industrial material processing and enabled the development of specialist components for high-end industries (such as aviation and defence) as well as an array of new medical devices, procedures and manufacturing technologies. The research is also directly responsible for the commercial success and sustained growth of a spin-out company, SPI Lasers Ltd, which has an annual turnover of over £40 million and employs more than 250 people in the Southampton area.
A new product has been developed to aid marine navigation and berthing at ports, based on the use of a single-sideband (SSB) active target, offering the dual benefits of substantially enhanced performance, and reduced size and production costs. The research has achieved significant commercial impact via the incorporation of the technique, conceived by Brennan, into all such targets made by Guidance Microwave Ltd, a UK-based engineering company specialising in the development, manufacture and supply of short-range active target location systems. To date, the company has sold approximately 700 active targets (around 25 per month), generating more than £3 million in sales. The idea (subject to patent protection) was initially incorporated in the mini-Radascan product, which is now a valuable tool to the industry and has given Guidance Microwave Ltd. a competitive advantage, becoming their most successful product.
The performance of absolute distance measuring systems has been improved in terms of accuracy, traceability, reliability and cost through the introduction of new methodology arising from research at the University of Oxford. This has brought commercial benefit to a German company making measurement systems, through the creation of a new product line. New capabilities for measurement have been delivered to a first customer in Germany. The research has also resulted in the establishment of new activity at the National Physical Laboratory, and influenced UK and European technology roadmaps for future manufacturing.
Aston's fibre Bragg grating research on optical sensing has had a global commercial impact, in particular the development of low-cost fibre FBG sensor interrogation methods. The work has been carried out with a diverse range of companies (including BAE Systems, Airbus, Insensys, Schlumberger) working across different sectors including oil and gas aerospace and marine. Specific impacts include the acquisition of 70% of the stock of Insensys Wind for US$15.7 million by Moog in 2009 and continuing employment by Smart Fibres, Moog Insensys and Astasense.
In this case study, two specific examples of impact are reported. One is cost-effective and high-performance smart antennas for the offender tagging system and marine navigation system for Guidance Navigation Ltd (Guidance). This collaboration has resulted in new and leading products and also helped the company to win a range of contracts. The other example is the development of a novel intelligent drilling system_for Zetica Ltd. This system can detect deeply buried unexploded ordinance and other objects. It has given Zetica a unique new product to significantly improve operational safety and win business worldwide.
Research at the University of Cambridge Department of Engineering (DoEng) has led to the creation of a method for measuring strain throughout a range of civil engineering structures using Distributed Fibre Optic Sensing (DFOS) and computing the stresses in these structures. This detailed information and associated insights have reduced reliance on conservative safety margins, while giving greater assurance of safety. The result has been significant reductions in construction materials and construction time. The work has generated direct savings of over GBP15M in three major infrastructure projects from 2011 to 2013 including Crossrail. It has had a wider influence across the whole industry by setting standards for geothermal piles in 2012, which were instrumental in the creation of this new industrial sector, and by changing attitudes in construction about the value of instrumentation and modelling.