Similar case studies

REF impact found 38 Case Studies

Currently displayed text from case study:

Creation of industrial products, processes and company growth from research on highly structured materials for gas adsorption and separation

Summary of the impact

Research at the University of Bath on highly structured materials for adsorbing and separating gases has created business and economic impact via:

  • Inward investment of £2.5 million in a University spin-out small and medium enterprise (SME), n-psl (Nano-Porous Solutions Ltd), whose business is developing new products for energy efficient gas separation for environmental and medical applications. Turnover of the new company is now > £1 million pa and growing, and has created significant inward investment opportunities from the USA for two of n-psl's customers, Parker Hannifin Manufacturing and Ultra Electronics, in military and personnel protection applications.
  • Improvement to existing products of an established SME (MAST Carbon International Ltd). Industrial testing of a new process, co-invented by MAST and the University, which contains the improved products; the new process is for specific gas separation aimed at meeting legislative emission limits, creating healthier workplaces, and recovery and reuse of valuable resources.
  • Creation of 28 new jobs, 24 within n-psl and four within MAST, together with the enhanced security of three within Parker Hannifin Manufacturing in the UK and several others at MAST.

[Comment: Although beyond the cut-off date for impact achievement, as at 31 October 2013 n-psl had been acquired by the FTSE 100 listed international engineering group, IMI plc.]

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering
Medical and Health Sciences: Public Health and Health Services

Grotowski redrawn: enhancing theatre practice and teaching, enriching culture

Summary of the impact

The AHRC-funded British Grotowski Project has enhanced international theatre practice and the teaching of theatre in schools, as well as broadening cultural understanding in the UK.

The project enabled the development of new theoretical and embodied understanding of Jerzy Grotowski's oeuvre within and beyond the theatre profession, enhancing theatre skills in actor training and directing amongst professional practitioners, schoolteachers and pupils. Many project events took place under the auspices of the Polish government's Polska! Year in the UK and UNESCO's Year of Grotowski, both 2009, which broadened the global impact.

Submitting Institution

University of Kent

Unit of Assessment

Music, Drama, Dance and Performing Arts

Summary Impact Type

Societal

Research Subject Area(s)

Studies In Creative Arts and Writing: Film, Television and Digital Media
Language, Communication and Culture: Cultural Studies, Literary Studies

Development and Testing of Self Compacting Concrete

Summary of the impact

The Advanced Concrete and Masonry Centre (ACMC) at UWS was among the pioneers in development of practical self-compacting concrete (SCC) in Europe. As a lead partner, the group contributed to two large EU projects on SCC, which underpinned the European standards on SCC test methods.

The group's research has contributed to the steadily increasing use of SCC in general construction, which has brought many benefits, such as enhanced durability, improved productivity, reduced overall cost, improved working environment and sustainability. Given the massive quantities of concrete being used (>14 billion tonnes/year globally), the increased use of SCC has had important economic, societal and environmental impacts.

Submitting Institution

University of the West of Scotland

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Civil Engineering, Materials Engineering

Public understanding: Nature's Raincoats

Summary of the impact

Nature's Raincoats is a physical exhibition and a website providing easily accessible information and resources. These entities have had extensive use within the public understanding of superhydrophobic surfaces (extremely repellent to water), including The Royal Society Summer Science Exhibition, Cheltenham Science Festival, The Big Bang Fair, British Science Festival and Techfest (India) — reaching thousands of people in the UK and overseas. As well as impacting on improved public awareness, the research informed website provides a direct route to research expertise for companies within the UK and internationally and extends good practice of working with industry e.g. Rolls Royce.

Submitting Institution

Nottingham Trent University

Unit of Assessment

General Engineering

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Biomedical Engineering

Enabling the commercial development of market-leading microcapsule-based products by Procter & Gamble using a novel mechanical analysis technology

Summary of the impact

The impact presented in this case study is the commercialisation of 15 products with perfume microcapsules by Procter and Gamble (P&G), made possible using capsule mechanical strength data provided by Prof Zhibing Zhang's research group at Birmingham. Use of microcapsules gives improved freshness performance, and thus commercial advantage, compared with traditional formulations; they have been incorporated in P&G's four major billion-dollar brands — Downy, Febreze, Lenor and Tide. This has significantly improved their competitiveness enabling P&G to retain their leading position in the USA and Western Europe. A novel micromanipulation technique developed at the University of Birmingham has been used extensively to obtain mechanical properties data for the micro-particles, including microcapsules prepared in Birmingham and provided by companies, which is related to their formulation and processing conditions and end- use performance. In addition, the knowledge generated has helped 15 other companies to commercialise new functional products containing micro-particles.

Submitting Institution

University of Birmingham

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

XeraCarb Limited: A Spin-out from Sheffield Hallam University Manufacturing Novel Ceramic Composites

Summary of the impact

XeraCarb Ltd is a spin-out company formed in 2011 to exploit a class of ceramic composite materials co-invented by Jones. These materials were first devised in 2008 via a Materials and Engineering Research Institute (MERI) Knowledge Transfer activity and developed from 2009 onwards through a series of UK Ministry of Defence (UK MoD)-funded research projects. XeraCarb was spun out after the underpinning research won a national award in 2011 as the most promising UK materials system for commercialisation. The applications for XeraCarb's materials range from body- and vehicle-armour to kiln furniture and wear-resistant components. The company has attracted significant venture capital investment and is valued at over £1m. It has set up an independent production facility, has appointed employees, has been awarded a TSB grant, has materials undergoing trials in respect of a number of applications, and has delivered its first orders.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

Developing rapid diagnostics for infectious disease agents

Summary of the impact

Research led by Dr A McNally at Nottingham Trent University has driven the development of rapid diagnostic protocols and devices for infectious diseases, principally Influenza, Salmonella and Campylobacter. This began by working on the validation of a standardised real-time PCR test for H5N1 avian influenza which is now used in European reference laboratories. Follow on funding from European Union and Technology Strategy Board led to the development of fully automated diagnostic devices for companies who have taken their products to market and attracted substantial investment from world-leading pharmaceutical companies.

Submitting Institution

Nottingham Trent University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics, Microbiology
Medical and Health Sciences: Medical Microbiology

CS1 - Innovative chemistry reduces the environmental impact of mining and pharmaceutical manufacture

Summary of the impact

The technology in this impact study is based on organofunctionalised silica materials that can address market needs for high purity in compounds that underpin many areas of the pharma, electronic and medical sectors as well as the recovery of limited resources such as precious metals that are used in diverse industries. Since the launch of the product portfolio in 2006, the materials have become embedded in purification or recovery steps in commercial production processes of leading mining (South Africa), pharmaceutical (UK) and petrochemical (Germany) companies and make a significant impact on the business of these companies as well as limiting waste of limited resources.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

Tribology: saving costs and improving safety across industries

Summary of the impact

Surface wear in moving components can endanger human lives and costs the UK economy £24 billion every year. Excellent research in this area — known as Tribology — at the University of Southampton (UoS) led to the foundation of the national Centre of Advanced Tribology (nCATS), which collaborates with over 100 companies and institutions in many sectors. Examples of nCATS impact include research findings forming an integral part of a BNFL/Sellafield Ltd's design guide for the prevention of radioactive slurry leakage. It also enhanced GE Aviation's competitive advantage by supplying novel electrostatic wear debris sensors (the only system in use), which have been integrated into new fighter aircraft engines.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Materials Engineering

Informing public understanding of nanoscience and materials for energy applications (CS5)

Summary of the impact

The School of Chemistry has a long track record of pioneering and innovative outreach activities aimed at stimulating public interest and understanding in chemistry research and its societal impact. During the period 2008-2013 it successfully communicated to a wide-ranging audience the significance of a series of "firsts" in the areas of nanoscience and materials for energy applications. Using YouTube, Royal Society Summer Science Exhibitions, roadshows and science festivals, this award-winning approach has engaged hundreds of thousands through digital media and thousands more face-to-face, raising public awareness, inspiring interest in science and delivering educational benefits for students and teachers alike.

Submitting Institution

University of Nottingham

Unit of Assessment

Chemistry

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies