Log in
OxCal is the most popular software package world-wide for calibrating and analysing dates within the carbon dating process, enabling the accurate dating of objects from the past. The brainchild of Prof. Christopher Bronk Ramsey, Director of the Oxford Radiocarbon Accelerator Unit (ORAU), OxCal is based on chronologies refined by the use of Bayesian statistical methods, and provides users with access to high-quality calibration of chronological data, now the basis for global chronologies. It is available online and free to download, and has played a highly significant role in establishing the ORAU as one of the pre-eminent international radiocarbon dating facilities. Funded by the NERC, and used widely within professional archaeology as well as other disciplines, OxCal has also played a key role in research projects (within Oxford and beyond) brought to the attention of the general public by the media.
Research at the University of Exeter on the links between the Amazon rainforest and climate change has influenced international climate policy, has directly assisted Brazilian environmental policymakers, and has received international media coverage. The underpinning research spans the vulnerability of the rainforest to anthropogenic climate change and the mechanisms behind the Amazonian droughts of 2005 and 2010. Impact has been achieved by stimulating public debate through the media, by contribution to science-into-policy documents produced by the World Bank and for the United Nations Framework Convention on Climate Change (UNFCCC), and by direct face-to-face interaction with UK and Brazilian policymakers.
A research partnership between Edge Hill University and Sefton Metropolitan Borough Council developed innovative methods of identifying gaps in knowledge and understanding about sedimentary coastal dynamics and investigating practitioner needs. The partnership enabled the dissemination of scientific information to audiences across the wider community. The partnership provided a framework which enabled and enhanced integrated coastal zone management (ICZM). Within this framework coastal zone managers were supported in the development of adaptation and mitigation strategies, taking account of both long and short term environmental change. Policy and management decisions are now based upon sound scientific evidence wherever possible, ascertained by research where time allows, with significant scientific, social and policy benefits. Practice elsewhere on the UK's Irish sea coast, and elsewhere in the EU, has been influenced.
Innovative geochemical research led by Selby at Durham has permitted savings of up to $70M in global mineral and petroleum exploration programmes (e.g., Andes of S. America; West of Shetlands oilfields). Selby's research has developed a unique geochemical toolbox using rhenium, osmium, platinum and palladium that constrain more accurate geological models leading to better reserve predictions. The toolbox provides previously unavailable geological time constraints and source identification of resources (e.g., copper, gold, crude oil) that gives mineral and/or petroleum companies an enhanced economic advantage by improving reserve estimates and/or reducing exploration budgets and/or minimising the environmental impacts of exploration.
Palaeoenvironmental research in the Ica Valley of Peru's southern coast is revealing how agriculture acted with climate change to trigger major social upheaval in the past. This history is informing and educating people and policy-makers in the present, thereby sustaining sympathetic land use for the future. Specific impacts include a Defra-funded project on Peruvian biodiversity by the Royal Botanic Gardens at Kew (RBG), the implementation of Peruvian decrees regarding education and forest conservation, and the establishment of forest-management agreements with major landowners.
Protecting London from the threat of flooding is of prime importance to the nation. Work in the Unit on regional sea-level rise and on the effect of storm surges was used in the Environment Agency's Thames Estuary 2100 (TE2100) plan to assess potential change in risk. The Unit's work estimated a very unlikely maximum rise in sea level of 2.7m by 2100, considerably lower than the previous worst-case scenario of 4.2m. It confirmed that 90 centimetres was the figure that should be used for developing the plan. TE2100 concluded that a second Thames Barrier (estimated cost £10-20 billion at today's prices) would not be needed not by 2030, but may be needed by 2070. Our results have been used to define procedures for the monitoring of regional sea and Thames water levels over the next few decades, and to review decision-making procedures to ensure that the risk of flooding in London is kept within acceptable levels, while avoiding unnecessary costs
Exceptional rainfall in June 2007 lead to widespread flood damage in the UK; Hull was particularly badly affected with 8600 houses and 1300 businesses flooded, the closure of schools and cancellation of many events. At the instigation of the City Council, Hull University geographers produced two influential reports that explained how and why the flooding happened and what might be done to improve flood readiness for the future.
The reports had impact at a national scale. They fed into the findings of the House of Commons Select Committee on Environment, Food and Rural Affairs (published 7 May 2008) and the Pitt Report (a Government Independent Review, published 25 June 2008), which were both tasked with addressing the summer 2007 floods. Significant elements of `The Flood and Water Management Act' (2010), which was enacted subsequently, were informed by our research.
The reports also impacted at the regional scale. Their findings were adopted by Hull City Council, the Environment Agency and Yorkshire Water. Therefore, our research also shaped several practical strategies to improve flood prevention policies and minimise danger, damage, distress and expense in future floods.
Angela Gurnell's research on the geomorphology, hydrology and plant ecology of urban water courses has led to the development of important new tools for the biophysical assessment and improved management of urban rivers. Known as the Urban River Survey (URS), these tools are accessed by the Environment Agency and River Trusts across London, and their application is supported with workshops and guidance provided by Gurnell and her team. The URS has been used to deliver morphological quality indicators for rivers across London; to appraise river restoration schemes; to develop catchment management plans; and to assess long-term changes in rivers. It is currently being developed to quantify and set targets for river improvement schemes in relation to their impact on river ecosystem services. Gurnell's work has made a distinct contribution to urban river improvements in Britain and Europe, particularly through her leadership in developing a European framework for assessing hydromorphology.
Research by the University of Southampton into river processes and restoration has contributed significantly to the adoption of fluvial geomorphology as a tool for river management. The research quantified for the first time, the cost of sediment management in rivers to the UK economy and environment, arguing that improvements could be achieved by applying fluvial geomorphology. The research developed new evidence, tools and training that were adopted by river management agencies and consultants for the scoping, assessment and planning of projects. This has resulted in cost-savings through reduced river maintenance, improved river environments, and the creation of a new employment market for graduates with geomorphological training.
Data generated by sensors on-board satellites orbiting the Earth have become extremely important to businesses and public sector organisations. They are the essential ingredient in satellite-enabled consumer services, from GoogleEarth to disaster management, insurance and agriculture. The Earth Observation Science group at Leicester has played a leading role in the transfer of cutting-edge Earth Observation techniques and know-how to the private and public sectors, enabling more businesses to use the technology for commercial gain. Leicester experience in technology translation led to its invited contribution to the UK space industry-led report to government, an Innovation and Growth Strategy for Space.