Log in
Water is essential to society. The water industry constitutes a significant part of economic activity locally, nationally and internationally, and land and water management are crucial to environmental quality. Typically, water resources are governed by top-down, hierarchical approaches at state level. In contrast, the research of Professor Laurence Smith has demonstrated the success of approaches that privilege local stakeholder input and collaborative management at catchment level. Research outputs have contributed to improved and reformed water management in the UK and internationally, evidenced by their adoption by local authorities, NGOs, Defra and others, and promotion in the guidance proffered by organisations including Defra and the OECD.
Newcastle's research has shaped national policy and practice on the management of flooding and agricultural pollution, and international policy and practice in the developing world on managing forested catchments and sustainable water resources management. We show evidence that our research has:
Impact of peat research at NTU comprises:
Research on peatland hydrology and erosion has been used by stakeholders including Defra, International Union for the Conservation of Nature (IUCN), Natural England, Scottish Natural Heritage, Moors for the Future, RSPB, water companies, horticultural peat producers and Environment Agency to improve policy and practice in the management of peatland habitats. Research into alternative growing media for use in horticulture, pioneered by Carlile in conjunction with William Sinclair Horticulture, contributed to development of market-leading brand New Horizon.
Surface water runoff in urban areas makes a significant contribution to pollution of lakes and rivers, but historically is poorly addressed in catchment models. The School of Geography (SoG) developed a Geographic Information System (GIS) model and supporting database to quantify urban source area loadings of 18 common and priority pollutants. This knowledge improves catchment models and supports impact assessment and mitigation planning by environment managers. The research has been exploited on behalf of the Department for Energy, Food and Rural Affairs (DEFRA), the Welsh Assembly, and the UK water industry (UK Water Industry Research — UKWIR, and United Utilities). The research has had three distinct impacts: 1) its use addressing EU Water Framework Directive obligations; 2) its on-going influence on construction industry guidance; and 3) the commercialisation of its stormwater pollutant coefficient database for Sustainable Urban Drainage Systems (SUDS) planning software.
Research at Cranfield has underpinned national policies for managing and allocating the UK's agricultural water resources over the past 20 years. It has supported major reforms in water policy, abstraction legislation and drought management. It has done this by modelling spatial and temporal variations in demand for irrigation, linking this to the financial impacts of water stress on crop yield and quality, projecting future demand, and assessing climate change impacts and potential adaptations. It has also significantly impacted the agri-food sector, helping agribusinesses assess the viability of irrigation and reservoir investment, encouraging collaboration, and reducing risks in the food supply chain.
Geography at Exeter has a well-established reputation for research on the effects of soil erosion and land management on soil quality, diffuse pollution, and on water quality in UK river systems. Since 2008, this research has been used to inform DEFRA policy, in relation to soils, water, and the DEFRA code of good agricultural practice. Dissemination of effective approaches to land management, most especially through the Catchment Sensitive Farming Initiative has resulted in clearly demonstrable changes in farming practice by landowners in several priority river catchments within the UK, demonstrating a positive change in behaviour and improved management of environmental risk. In addition, research on agricultural erosion has been used in the development of new agricultural policy practices in Canada.
Diarrhoeal disease is the world's second most common cause of death in children under five years old, killing 760,000 children each year according to the World Health Organisation (WHO). Microbial contamination of drinking water is one of the most important causes. In England and Wales acute diarrhoeal disease is estimated to cost the country £1.5 billion annually. UEA epidemiologists have shown the important role of water supply systems in spreading diarrhoeal disease in developed and developing countries; led WHO research projects on small scale drinking water systems; and influenced WHO policy on small scale drinking water systems in developed and developing countries. Methodological research on epidemiological methods for monitoring and regulating bathing water quality has led to changes in WHO guidance on bathing water quality standards and influenced US Environmental Protection Agency criteria. Hunter's participation in international expert panels facilitated the impact of this research on policy.
Exeter Engineering's Centre for Water Systems (CWS) undertakes internationally leading fundamental and applied research in the $500bn global water sector. EPSRC-funded research has underpinned impacts with both reach and significance in the areas of practitioner and professional services and economic impact. CWS staff have co-authored authoritative best practice guides with highly respected practitioner publishers: the Construction Industry Research and Information Association (CIRIA), the Building Research Establishment (BRE) and Spon Press. These have been widely used in the water sector, and construction and built environment sector. CWS software and knowhow have been used extensively by water service providers (such as Scottish Water) and their consultants (including SEAMS, originally an Exeter spinout) to enhance business performance by identifying efficiencies, saving costs and improving operation. Optimisation software has been made freely available and has hundreds of users worldwide including consultants and financial organisations.
The impact of research by the University of Southampton into global access to safe drinking water has: (i) provided important evidence for new policy initiatives by the World Health Organisation and UNICEF to promote home water treatment to reduce the 1.9 million deaths each year due to water- related infections, and (ii) stimulated debate among a range of stakeholders, including the media, advocacy groups and UN bodies, by challenging the accuracy of the assertion by the UN Secretary General that the UN Millennium Development Goal for safe water access has been met.
Over a million urban dwellers in several developing countries are accessing water services as a result of research undertaken at Loughborough University. National Water and Sewerage Corporation (NWSC), Uganda's main urban water utility, applied the research findings to improve service quality, and extend piped water supply to the previously un-served. During 2008-2011, over 500,000 additional urban residents accessed piped water supply of improved bacteriological and physico-chemical quality — resulting in significant enhancement of health and quality of life (particularly of children). Furthermore, the research benefits were transferred to other countries, through the work of NWSC's External Services Department, extending the reach to other countries including Kenya, Tanzania, India and Zambia.