Log in
The Scottish Government is aiming to generate all of its electricity through renewable energy sources by 2020. Research by the University of Aberdeen has produced a freely available tool - the Windfarm Carbon Calculator - that has overhauled the planning process for windfarm developments in Scotland. In changing public policy and planning regulations, and informing the public debate, Aberdeen's calculator is helping the Government fulfil its pledge to become "the green energy powerhouse of Europe" while protecting some of the country's most environmentally fragile areas. It continues to guide the actions of politicians, planners, the wind industry, NGOs and community groups.
The claimed impact therefore is on: the environment, economy and commerce, public policies and services, practitioners and services.
Results from climate physics research at the University of Oxford have demonstrated that targets for cumulative carbon emissions, rather than greenhouse gas concentrations, are a more effective approach to limiting future climate change. This new approach and the resulting `trillionth tonne' concept have had substantial political and economic implications. Impacts since 2009 include (a) stimulus to policy developments; (b) influence on the business decisions of Shell e.g. to invest in a $1.35bn carbon capture and storage facility; and (c) significant public and media debate with a global reach.
In the REF impact period, our research on carbon-rich tropical peat swamp forests in Indonesia has been used to:
Impacts: I) Development of carbon credit certification schemes, including the expansion by the Gold Standard Foundation into land-use and forestry and the creation of the Natural Forest Standard by Ecometrica Ltd (both in 2012). II) Enhanced cross-sector collaboration for the quantification of forest-loss risks and implications for financing risks, through the 2011 creation of a Forest Finance Risk Network (FFRN).
Significance and reach: The Gold Standard Foundation represents nine forestry projects worldwide (benefiting >8,500 people) and over 1.8million ha. of Brazilian land is managed through two Natural Forest Standard projects. The FFRN connects 80 member organizations globally.
Underpinned by: Research into carbon emissions associated with forest-loss, undertaken at the University of Edinburgh (2005 onwards).
Carbon dioxide sequestration is the process by which pressured CO2 is injected into a storage space within the Earth rather than released into the atmosphere. It is one of the major ways that carbon dioxide emissions can be controlled.
Research since 2004 by applied mathematicians at the University of Cambridge into the many different effects that might be encountered during this process has had considerable impact on government and industry groups in determining how the field is viewed and how it should and might be industrially developed. The work played a major role in the CO2CRC conferences and was subsequently reported to the Australian Government by the CO2CRC chair and organisers.
Vincent Gauci and The Open University (OU) Ecosystems Research Group have demonstrated human influences over exchanges of carbon within vulnerable, temperate and tropical wetland ecosystems, which are the largest source of the powerful greenhouse gas methane to the atmosphere. The group's work showing that acid rain pollution suppresses methane emissions from wetlands has influenced policy in the UK, particularly peatland restoration, where the group has had direct interaction with users. The group's work on carbon balance resulting from deforestation, drainage and fires in the carbon-rich Bornean peat swamp has also informed IPCC methodologies for carbon balance calculations in its 2013 Wetlands Supplement.
Research in the UoA developed a methodology for Carbon Calculations over the Life Cycle of Industrial Activities (CCaLC), providing `cradle to grave' carbon footprint estimates for commercial products. The methodology was embedded in a set of software tools designed to be used by non- experts, allowing companies to perform carbon footprinting in-house. The software is free to download, currently with 3300 users in more than 70 countries. The methodology and software tools have been endorsed by BERR (now BIS), DEFRA and the World Bank, and used widely by industry, across a range of sectors, to reduce carbon footprints of their products. This has resulted in significant environmental and socio-economic benefits, including estimated climate change mitigation gains in excess of £450m.
Our research on the economics of low carbon cities has impacted on energy and low carbon strategies and on investment decision-making in major UK cities including Leeds, Sheffield and Birmingham. It has also influenced guidance issued to local authorities by the Committee on Climate Change and the Department for Communities and Local Government, and has helped to embed strategies and targets for green growth in the next five-year plan for China. The research was voted one of the most transformative ideas to be presented at the UN climate negotiations in Durban in December 2011, and the approach is now being replicated in cities in India, Peru, Malaysia and Indonesia.
Research conducted at the Business School's Centre for Business and Climate Change since 2008 has:
This impact has been of international significance, reaching international standard setters, investors, corporations and other stakeholders. For example, 26 multinational companies paid to participate in carbon benchmarks conducted by a spin-out company created by the Centre and based on methods it developed. 90 global investors with US$7tr of assets have launched a shareholder action initiative inspired by the Centre's research. The world's leading carbon accounting standards body has adopted a conceptual framework developed by the Centre.
Research at the University of Exeter on the links between the Amazon rainforest and climate change has influenced international climate policy, has directly assisted Brazilian environmental policymakers, and has received international media coverage. The underpinning research spans the vulnerability of the rainforest to anthropogenic climate change and the mechanisms behind the Amazonian droughts of 2005 and 2010. Impact has been achieved by stimulating public debate through the media, by contribution to science-into-policy documents produced by the World Bank and for the United Nations Framework Convention on Climate Change (UNFCCC), and by direct face-to-face interaction with UK and Brazilian policymakers.