Similar case studies

REF impact found 23 Case Studies

Currently displayed text from case study:

18. Improving survivability of protective structures through novel design and modelling

Summary of the impact

The vulnerability of both military and civilian infrastructure to the threat of terrorist activity has highlighted the need to improve its survivability, and this poses a significant design challenge to engineers. Research work at Imperial has led to the development of novel constitutive relationships for polymeric materials coupled to novel analysis procedures; software algorithms for effective simulations of blast and impact events; and enhanced experimental testing methods allowing a fundamental understanding of the structures. According to Dstl, this body of research has `unquestionably improved the security and effectiveness of the UK armed forces operating in hostile environments abroad as well as the safety of citizens using metropolitan infrastructure within the UK'. The techniques have been applied to vehicles and UK infrastructure, including for high profile events, such as the 2012 Olympics.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Turbulence research improves ocean forecasting and marine energy infrastructure

Summary of the impact

New techniques for measuring, and novel measurements of, turbulence in continental shelf seas and estuaries, developed by Bangor University's Turbulence and Mixing Group, have revolutionised the representation of key vertical exchange processes within state-of-the-art numerical ocean models. These measurements have directly improved modelling accuracy of coastal sea mixing dynamics and the forecasts produced are directly applied in development of government policy, marine energy technology, and search and rescue activities in the UK (e.g. Met Office, Cefas) and Baltic Sea regions of Europe. This measurement of marine turbulence has also provided critical information in determining the effective siting of marine renewable energy plants.

Submitting Institutions

Bangor University,Aberystwyth University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Oceanography
Engineering: Environmental Engineering, Interdisciplinary Engineering

Fluid Modelling - Expertise and Software

Summary of the impact

Fluid modelling approaches devised by the Materials and Engineering Research Institute's (MERI's) materials and fluid flow modelling group have impacted on industrial partners, research professionals and outreach recipients. This case study focuses on economic impacts arising from improved understanding which this modelling work has given of commercial products and processes. These include: metal particulate decontamination methods developed by the UK small company Fluid Maintenance Solutions; liquid crystal devices (LCDs) manufactured by the UK SME ZBD Displays; and an ink-droplet dispenser module originally invented at the multinational Kodak. Additionally, the modelling group's computer simulation algorithms have been adopted by industrial research professionals and made available via STFC Daresbury's internationally distributed software package DL_MESO. Finally, the group has developed, presented and disseminated simulation-based materials and visualisations at major public understanding of science (PUS) events.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Chemical Engineering, Interdisciplinary Engineering

Industrial take-up of advanced manufacturing process for nanomaterials

Summary of the impact

Research at Kingston University into the use of flame spray pyrolysis (FSP) to manufacture metal oxide nanoparticles has resulted in the creation of an industrial FSP nanoparticle production line. This achieves production rates an order of magnitude higher than was previously achievable, while allowing particle size to be controlled at the same scale as existing small FSP processes.

TECNAN, a Spanish SME, established in 2007, that manufactures and sells nanomaterials on the international market, has used this production line to produce a range of nanoparticles for commercial customers, for use in a wide range of applications. As well as allowing a broad product range to be offered, the production line also achieves a cost reduction of over 30% compared to previous manufacturing methods.

Submitting Institution

Kingston University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Advanced fluid flow modelling improves the efficiency of industrial burners

Summary of the impact

Using advanced mathematics and numerical modelling we have demonstrated how fundamental understanding of laminar-turbulent transitions in fluid flows can save energy. From 2008 we helped the cleantech company, Maxsys Fuel Systems Ltd, to understand and improve their technology and demonstrate to customers how it can reduce fuel use by 5-8%. Customers including Ford Motor, Dow Chemical and Findus testify to the impact from financial savings and reduced carbon emissions obtained by installing Maxsys products on industrial burners used widely in many industrial sectors including automotive, bulk chemicals and food. In 2010, Selas Heat Technology Company bought the Maxsys brand to invest in this success.

Submitting Institution

Aston University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Interdisciplinary Engineering

Realising innovative and adaptive product design and optimisation through an integrated materials and modelling system

Summary of the impact

The investigators of this impact case study have utilised their expertise in materials engineering, theoretical/numerical modelling and product development to achieve significant economic, social and environmental impacts in a range of fields through developing a systematic methodology for innovative product design and optimisation. Through several industrial projects and collaborations, significant impacts have been witnessed including new products creating several million pounds in revenue annually for businesses in different sectors and green manufacturing technologies in repair and reclamation of components. All the described impacts were results of investigation in the Mechanical Engineering and Materials Research Centre (MEMARC) over the assessment period.

Submitting Institution

Liverpool John Moores University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Accelerated development of a tidal stream energy industry

Summary of the impact

Our research has been key to the development of investor confidence in an emerging UK tidal stream industry. We have contributed to the development and validation of commercial and open- source software for tidal stream system design and our expertise has been instrumental to the successful delivery of major objectives of two national industry-academia marine energy projects commissioned by the Energy Technologies Institute (ETI). Taken together, these outcomes have reduced engineering risks that had been of concern to potential investors. Investor confidence in tidal energy has been increased, as highlighted by Alstom's £65m acquisition of a turbine developer following a key outcome of the ETI ReDAPT project.

Submitting Institution

University of Manchester

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Mechanical Engineering, Interdisciplinary Engineering

Innovative Tunnel Backfill by Pneumatic Conveying of Dry Particulate Materials.

Summary of the impact

Research at GCU led to a novel method for backfilling pipeline tunnels providing the ability to fill tunnels three times more quickly than the traditional method resulting in a cost saving of £1.5M on a single project. This approach is now best practice at Murphy Pipelines Ltd (MPL) and features in current tenders to a value of £30M. The change in fill material lowered the carbon footprint by 5000 tonnes in a CEEQUAL award winning project, in addition, the removable fill material allows the recycling and re-use of tunnels, adding to the assets of the company and reducing costs.

Submitting Institution

Glasgow Caledonian University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Flow modelling research leads to innovative and profitable products

Summary of the impact

Our flow modelling and process optimisation research has improved significantly the scientific understanding of key industrial coating, printing and droplet flow systems. We have implemented our research findings in software tools for staff training and process optimisation which have enabled: (i) the worldwide coating industry to improve the productivity and sustainability of their manufacturing processes; (ii) [text removed for publication]; (iii) a major automotive supply company to develop an award-winning droplet filtration system for diesel engines. [text removed for publication].

Submitting Institution

University of Leeds

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Interdisciplinary Engineering

High - Strain Materials Characterisation

Summary of the impact

Research undertaken in the University of Cambridge Department of Physics has provided benchmark data on, and fundamental physical insights into, the high strain-rate response of materials, including powdered reactive metal compositions. The data have been used widely by QinetiQ plc. to support numerical modelling and product development in important industrial and defence applications. One outcome has been the development of a reactive metal perforator for the oil industry which significantly outperforms conventional devices. These devices `perforate' the region around a bore-hole, thereby substantially enhancing recovery, particularly in more difficult oil fields, and extending their economic viability. Over a million perforators have been deployed since their introduction in 2007.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies