Log in
Geographical research at the University of Salford over the last 12 years has developed understanding of the effects of landscape structure and landscape change, on the transmission of a fatal parasitic tapeworm infection in humans. As a result of this, and related research:
Bristol University's School of Veterinary Sciences, a global leader in feline medicine, was the first UK centre to develop and commercially offer polymerase chain reaction (PCR) and quantitative (q) PCR assays to detect a range of feline infectious and genetic diseases. Since 2008 there has been a dramatic increase in the number of qPCR tests performed, with over 35,000 tests carried out between 2008 and 2013. The results of genetic testing have informed breeding programmes and resulted in a reduced prevalence of genetic disorders such as polycystic kidney disease (PKD). The results of testing for infectious diseases have informed diagnosis and treatment modalities and, together with the genetic testing, have contributed to significant improvements in feline health and welfare. This work has also generated commercial income in excess of £1.7M, which has been used to further research into feline infectious and genetic diseases.
Impact: Economics, policy, animal and human health: In 2006, SoS (a Public Private Partnership-PPP) was established involving: University of Edinburgh, a pharmaceutical company, a charity, and the Govt. of Uganda to control sleeping sickness by eliminating Trypanasome carriage in cattle. The prevalence of trypanosomiasis has been reduced by 75% and sleeping sickness cases have fallen year on year since the PPP was established and Uganda has received a cost benefit between US$125 and $400M
Beneficiaries: The Ugandan population, Ugandan Cattle population.
Significance: Sleeping sickness, which is difficult to diagnose and treat in humans, is often fatal. Ten million Ugandans are at risk from sleeping sickness. SoS established a veterinary network in Uganda producing
Attribution: Professor Welburn (University of Edinburgh, UoE) founded SoS and developed essential diagnostic techniques.
Reach: SoS provides a model for the elimination of the disease across sub Saharan Africa in an economically sustainable fashion - with over 22 million people at risk.
The domestication of animals — some ten thousand years — ago has allowed important insights into the origins and spread of farming across the globe and the impact that had on human biology and culture. Research carried out by an international research group, led by Aberdeen and Durham Universities, has brought understanding of this fundamental change in human history to a broader public, resulting in impacts on culture and quality of life. The research findings have featured widely in TV and radio programmes, both in Britain and abroad. The main researcher was also invited to participate in a six-month (privately-funded) experimental sailing expedition that traced the migration route of ancient Austronesian settlers into the pacific, which led to the collection of unique samples for research. The voyage resulted in a film and a book.
Amphibian population declines are recognised as one of the largest biodiversity crises in modern history. Professor Andrew Cunningham, Institute of Zoology (IOZ) headed the team that identified a novel chytrid fungus as the major cause of amphibian population declines and species extinctions. Our work is the basis for the scientific and conservation responses to this disease, and led to the fungus being listed by the OIE (World Organisation for Animal Health). We have established national surveillance programmes for the pathogen across the EU and elsewhere, identifying species at risk and developing mitigating measures to prevent pathogen introduction and species extinction.
Impact: Health and welfare; policy in the form of national and international guidelines; diagnostic service; engagement with patient groups.
Significance: UoE-formulated diagnostic criteria adopted by the World Health Organisation (WHO), the European Centre for Disease Prevention and Control (ECDC) and US Centers for Disease Control and Prevention (CDC), enable reliable case ascertainment and longitudinal study of disease trends. The UoE Creutzfeldt-Jacob Disease Unit acts as an international reference centre for diagnosis. Case ascertainment has improved.
Beneficiaries: Patients with prion disease and their families, policy-makers, the NHS, charities.
Attribution: The UoE CJD Unit led the work with international collaborators.
Reach: Worldwide; diagnostic criteria are WHO-endorsed and have been adopted worldwide. Pooling of data across Europe has enabled assessment of 11,000 cases of sporadic CJD.
Research at the University of Nottingham (UoN) has had influence on development of health policy in the UK and internationally. It is recognised that the risk of diseases related to obesity and insulin resistance, is partly determined by the nutritional environment experienced during early life. Against a background of scepticism researchers at the UoN have generated data that has been critical in demonstrating the biological plausibility of such associations. This has influenced expert panels and non-governmental organisations in framing their current recommendations for nutrition in pregnancy and infancy, which benefit women and children worldwide.
Impact: Changed public health policy by quantifying the level of asymptomatic vCJD infection in the population and the mechanism of its transmission, and by identifying cases of human-human transmission of vCJD via blood products.
Significance: UoE work informed the public and policy-makers of the risk of vCJD transmission, which resulted in policy changes and the implementation of precautions to prevent vCJD transmission and to limit the chance of a self-sustaining blood- or tissue-contamination-related secondary epidemic.
Beneficiaries: Patients, the NHS and healthcare delivery organisations, government, policy-makers.
Attribution: The work was carried out at UoE in the National Creutzfeldt-Jakob Disease Research and Surveillance Unit (NCJDRSU) and the Roslin Institute UoE (Roslin) with UK collaborators.
Reach: International, particularly UK and North America.
Research conducted at the University of Bristol between 2003 and 2012 on the ecology, epidemiology and control of parasitic flies and worms has improved animal health and welfare in the UK and is addressing a major constraint on global food production — animal disease, particularly in the context of climate change. These are some of the impacts:
Research at the University of Liverpool (UoL) has demonstrated the importance of intestinal tapeworm infection as an important and hitherto unrecognised risk factor for a major life-threatening acute intestinal disease (colic) in the horse. A novel serological test for exposure to the tapeworm infection was developed at UoL to provide a diagnostic tool for research and clinical applications. As a result, "best practice" equine preventive healthcare programmes now include anti-helminth and tapeworm control protocols and anti-tapeworm anthelmintics are licensed for use in the horse and marketed throughout the world. This research has had a major impact on equine health resulting in welfare and economic benefits for horses, their owners, veterinary practices and industry.