Log in
Newcastle's research has shaped national policy and practice on the management of flooding and agricultural pollution, and international policy and practice in the developing world on managing forested catchments and sustainable water resources management. We show evidence that our research has:
Managing and conserving the marine environment requires defining what constitutes healthy ecosystems and understanding the effects of pollution. Edinburgh Napier University (ENU) research defining `undesirable disturbance' allowed the United Kingdom (UK) to mount a successful defence at the European Court of Justice in 2009 against alleged infraction of UK obligations under the Urban Waste Water Treatment Directive. This saved UK taxpayers £6 billion in estimated additional costs. The European Union (EU) Marine Strategy Framework Directive uses a definition of good status for pelagic habitats derived from work at ENU, which benefits policy makers and marine stakeholders by facilitating the establishment of Marine Protected Areas.
Surface water runoff in urban areas makes a significant contribution to pollution of lakes and rivers, but historically is poorly addressed in catchment models. The School of Geography (SoG) developed a Geographic Information System (GIS) model and supporting database to quantify urban source area loadings of 18 common and priority pollutants. This knowledge improves catchment models and supports impact assessment and mitigation planning by environment managers. The research has been exploited on behalf of the Department for Energy, Food and Rural Affairs (DEFRA), the Welsh Assembly, and the UK water industry (UK Water Industry Research — UKWIR, and United Utilities). The research has had three distinct impacts: 1) its use addressing EU Water Framework Directive obligations; 2) its on-going influence on construction industry guidance; and 3) the commercialisation of its stormwater pollutant coefficient database for Sustainable Urban Drainage Systems (SUDS) planning software.
Current Defra policy on river catchment management has been informed by our interdisciplinary research over a 10-year period, much of it addressing the challenges posed by the EU Water Framework Directive. Outcomes from our research are reflected in the policies proposed in the 2011 Water for Life White Paper and also in the multi-million pound investment plans of water companies. We have also influenced a whole-community framework for catchment management in the UK that was piloted in 2011 and has now been extended to 100 catchments across England.
New characterisation tools for natural organic matter (NOM) in drinking water are now used as standard practice within water companies such as Severn Trent Water, United Utilities and Yorkshire Water. The tools inform decisions, and help develop strategic plans on catchment management, source selection, treatment optimisation, and disinfection practice. Water companies experienced difficulties in treating high levels of NOM. Cranfield created a novel characterisation toolkit to measure NOM for its electrical charge and hydrophobicity. Also, new techniques for measuring aggregate properties and emerging disinfection by-products have provided a comprehensive analysis. Two novel treatment technologies are currently marketed. These technologies have raised international interest, resulting in industrial development in Australia.
For over 40 years, the Urban Pollution Research Centre has undertaken pioneering work in understanding the sources, behaviour and fate of urban diffuse pollution and its mitigation using sustainable urban drainage systems (SUDS). Relevant impacts claimed here include the adoption of SUDS into UK practice and legislation, the role of SUDS as key components in achieving EU Water Framework Directive (WFD) requirements and the embedding of our research within national best practice guidelines. In response to recent policy drivers, we are collaborating with Arup to commercialise SUDSloc and are informing policy developments in the fields of diffuse pollution mitigation and urban ecosystem services.
Research at Loughborough University (LU) from 2000-2013 by Dr Wood and Professor Wilby has enabled Natural England, the Environment Agency of England and Wales, and the Environmental Protection Agency of Ireland, to implement European Directives (Water Framework, Habitats, and Groundwater). Benefits were accrued from the development of monitoring techniques and integrated modelling to understand long-term drivers of ecological status in river systems. This research has been translated into field standards and planning guidelines within the UK water sector. Moreover, this work helped other organisations such as World Wildlife Fund (WWF-UK) to raise public awareness of the consequences of household water use on freshwater environments.
The intensification of food production, fossil fuel combustion and water consumption has led to substantial increases in the amount of nitrogen and phosphorus flushed from land to water. The accumulation of these nutrients in freshwaters, estuaries and the coastal zone has led to reductions in biodiversity, the loss of ecosystem services, and compromised water security. The UK is a signatory to a raft of international conventions and policies which require reductions in the flux of nutrients from land to the water and restoration of ecosystem health and services. To meet these obligations, policymakers need information on the scale of the problem, the sources of nutrients and the effectiveness of intervention measures.
Research in the Unit has directly addressed this need. It has provided robust scientific evidence of the scale of the problem and the sources of nutrient enrichment, and has provided the capability to test intervention and policy scenarios at field to national scales. It has fed directly into the development of monitoring approaches and mitigation measures now in use by the Environment Agency (EA) and Defra, informed the development of UK Government policy in relation to catchment management, and supported compliance with the EU Water Framework Directive, the renegotiation of the Gothenburg Protocol under the International Convention on Long-Range Transboundary Air Pollution, and reporting on discharges of nutrient pollution to the North East Atlantic under the OSPAR Convention.
The results of commissioned research by Aberystwyth University (AU) have shaped decision-making that led to the relocation of refugee Roma, Ashkali and Egyptian (RAE) communities in Mitrovica, northern Kosovo. In 2009/2010 AU research unequivocally identified the source of elevated lead (Pb) levels in soils that had been blamed for high infant and adult mortality rates in RAE refugee camps, and established that Roma Mahalla had sufficiently low soil Pb levels to permit the construction of a purpose-built housing development for the RAE communities. Following the relocation of the RAE families to Roma Mahalla in 2010/2011 there has been a significant reduction in blood Pb levels in children with no reported deaths attributable to Pb poisoning. This AU research project has had a demonstrable positive impact on life quality and human health of the resettled RAE communities living in Mitrovica.
The OPAL Water Centre at UCL, funded to a total of £732k, developed an innovative educational national water survey programme accessible to people of all ages and abilities, promoted especially within disadvantaged communities. Of the more than 45,000 participants, 17% were from 'hard to reach' communities. The Survey encouraged greater understanding of the aquatic environment through public participation in water quality and aquatic biodiversity assessment and used high-quality research to link the community, voluntary and statutory sectors by creating a channel through which locally derived information could lead to site-specific management as well as national and international policy.