Log in
Research conducted since July 2008 by the University of East London in collaboration with Control Techniques Dynamics (CTD), a leading manufacturer of Permanent Magnet Synchronous Motors (PMSMs), has led to the development of a software tool called the PMSM analyser. This tool has helped CTD to improve its motor design methodology by incorporating electromagnetic, thermal and cost models, together with genetic algorithms. In turn, the design optimisation allowed CTD to enhance motor performance and reduce manufacturing time by 30-40%, leading to an increase of 20% in company sales between 2008 and 2013. During the same period the company was able to cut materials usage by 15%.
The Leicester Variwave project, in relation to electrostatic dust precipitation, utilises a novel high voltage, high frequency, high power transformer within the power supply, which has enabled cuts in industrial emissions of ~50 per cent and considerable cost savings. Most new-build power stations and many other industrial sites now use technology based on that developed in Leicester. As well as fly ash and dust, the technology has the ability to trap sub-micron particulates thought to be partly responsible for the increase in the number of asthma cases during the past few decades. The MD of [text removed for publication] states `Through publications made by ...Leicester ...we were interested to learn how the team designed their high voltage transformer, and how that transformer operated with the high frequency, high power switched-mode electronics. They achieved that `Holy Grail' combination [of high voltage, frequency, high power] in a 70 kW switched-mode power supply (SMPS) running at 20 KHz and at 50 kV. The publication in the IEEE Transactions on Power Delivery was very helpful, and enabled us to choose the direction when pushing the design boundaries in developing our own high power, high voltage technology for electrostatic precipitators'. Dr Devine, a key member of the Leicester team between 1995 and 2000, was employed by [text removed for publication] in 2001 purely on the basis of his knowledge of Variwave. [text removed for publication] now have 200 units in operation. In 2002 Dr Devine was head-hunted for his knowledge of Variwave and moved to [text removed for publication], who also developed commercial units. The uptake of the technology has been growing steadily since 2001. Exemplar data from one company on the associated reduction in emissions shows 195 switched mode power units installed in boiler plants worldwide by 2004 gave a reduction of around 60%. A 60% reduction in emissions is equivalent to a reduction from 40 mg.m-3 to 16 mg.m-3 of flue gas particulates. Since 2004 to date there are now estimated to be at least 5000 units installed worldwide.
This addresses improvements in the design of hydraulic transmission systems, for vehicular and renewable energy generation systems, by replacing the mechanical gearboxes to reduce their significant energy losses. This ERPE design of novel digitally controlled hydraulic transmission systems has culminated in the licensing, manufacture and production of high efficiency hydraulic gearboxes, now registered as the Digital Displacement® (DD®) patented technology.
This novel technology enabled the formation of the spin-out company Artemis Intelligent Power Ltd., with 30 staff in 2008, which was acquired by Mitsubishi Heavy Industries Ltd., in 2010, enabling the growth to 50 employees today.
Prof Irving and Prof Sterling of the Institute of Power Systems at Brunel University collaborated with National Grid (NG) to develop and deploy a Sparse Dual Revised Simplex (SDRS), optimisation engine for real-time power allocation of all generators that were controlled by the NG. Since 2005-6 NG has been using the algorithms to aid in operation of their Balancing Mechanism, which provides a means of adjusting the level of production or consumption of individual generators or demands in the British Electricity Trading and Transmission Arrangements (BETTA). The algorithms enable the Balancing Mechanism (BM) to efficiently adjust outputs of generators in real time in order to balance the demand for electricity at minimum cost. Therefore, providing economic balancing of the transmission system at a scale of 2-3% of the £5bn annual electricity market (approximately £100M-200M per annum), hence about £800 million has been optimally traded in total in the BM since 2008. It is also important to acknowledge the reliability of the algorithms and SDRS optimisation engine from 2006 to present day, as periods of software outage carry high operational costs. The algorithms developed at Brunel continue to have very significant real world impact in terms of financial volume and its reach, such that every transmission scale power generator in the UK participates in the balancing mechanism and by implication every electricity-user benefits.
Collaborations funded through EPSRC Interact and RCUK UK-China Science Bridge resulted in QUB's advanced control research having important economic and environmental impact in China, Pakistan, Vietnam. This includes the creation of new core modules for the Shanghai Automation Instrumentation Co (SAIC) SUPMAX Distributed Control System series of products now in use for whole plant monitoring and control to maximise energy efficiency and reduce pollutant emissions. These products have since 2008 increased SAIC's revenue by over $50M p.a. Related networked monitoring technologies have been successfully deployed in Baosteel's hot-rolling production lines and in the Nantong Water Treatment Company that treats 20,000 tonnes of industrial waste water daily.
Model Predictive Control (MPC) is a controller design methodology involving on-line dynamic optimisation of a user-defined objective. The research of Prof. D.Q. Mayne FRS and his colleagues at Imperial College has resulted in the first MPC algorithms capable of dealing with both linear and nonlinear systems and hard constraints on controls and states, thus making MPC a viable technique for industrial applications. His research in linear and nonlinear MPC has been exploited by multinational companies such as Honeywell and ABB. Evidence of impact is found in: 1) ethylene production by Basell Polyolefins GmbH resulting in economic benefits in millions of dollars annually; 2) Sinopec's JinShan power plant efficiency, reducing fuel consumptions of 500 tons of coal and 1,700 tons of coke per annum; 3) automotive powertrain design creating new business for Honeywell (based on OnRAMP design suite); 4) ABB's cpmPlus Expert Optimizer tools used for cement manufacturing, affecting companies such as Untervaz (Switzerland), Lägerdorf (Germany) and Buzzi (Italy); 5) ABB's BoilerMaz system for optimising boiler start-up mechanism resulting in energy savings per start-up of around 15%.
This case study describes impact from the Newcastle-led research project to construct the world's first dedicated single-crystal diffraction synchrotron beamline for chemistry and materials science at Daresbury Laboratory Synchrotron Radiation Source (SRS). The result was an innovative and productive facility that has served as the model for the development of other facilities internationally, especially at Diamond Light Source (UK) and the Advanced Light Source (USA). The original Newcastle University research has helped produce scientists now employed by industry and public service sectors around the world. Major new and beneficial drugs and catalysts have been developed with the aid of the synchrotron beamlines and work conducted at these facilities has been critically important for the advancement of the global chemical and pharmaceutical industries and US Government energy development programmes.
Motors are at the heart of all electric machines. World-leading software developed at the Scottish Power Electronics and Electric Drives (SPEED) Laboratory at the University of Glasgow has been used to design thousands of new motors, enabling the manufacture of millions of machines across a range of industrial sectors. From compressors in refrigerators to the motors in power tools, SPEED has improved the design of products manufactured by over 60 companies across the world including Bosch, General Motors, Grundfos and Rolls Royce. In 2011, the SPEED Laboratory was purchased by CD-adapco, the world's largest independent provider of computer-aided engineering simulation software.
The EKG technology developed by Newcastle has launched an entirely new spectrum of applications for geosynthetic materials and has resulted in changing established practice in civil, construction and mining engineering. The commercialisation of the technology, linking industry to applications of EKG products and processes, has been driven by the spin-out company Electrokinetic Limited. Amey, a leading international infrastructure services provider, incorporated the EKG technology into £1M projects for Network Rail and the Highways Agency in 2011-12. The end results were a 30% cost saving and 40% reduction in CO2 compared to established methods. The new range of EKG products has been recognised by British Standards, leading to the revision of BS 8006 for reinforced soil in 2010.
The University of Nottingham (UoN) led research that resulted in the design, evaluation and national implementation of a new approach to mastitis control on British dairy farms; the `DairyCo Mastitis Control Plan'. The programme, which commenced in 2009, was implemented on farms holding 10-15% of all British dairy cows. The uptake of the scheme is continually increasing and has generated savings to the British dairy industry to the order of £5-10M per annum.