Similar case studies

REF impact found 51 Case Studies

Currently displayed text from case study:

National Structural Integrity Research Centre (NSIRC)

Summary of the impact

Brunel and The Welding Institute (TWI) have been pursuing collaborative research on the use of ultrasonic guided waves for the non-destructive testing of oil & gas pipelines, plates, rails, aircraft wires and other engineering materials since 2003. This successful collaboration has led to the creation in 2009 of the Brunel Innovation Centre (BIC), a joint venture between the two institutions based at TWI headquarters in Great Abington, Cambridgeshire, whose mission is to develop a financially sustainable research facility, drawing on Brunel's existing strengths, to complement and underpin the applied research and development activities at TWI. BIC's very successful operation has led TWI to make a significant re-alignment of their strategy and business model, from being a technology provider offering mostly short-term industrial research and consultancy to their members, to providing medium- and long-term research and postgraduate training at the new National Structural Integrity Research Centre (NSIRC), a joint facility being built at TWI headquarters. TWI received a grant of £22 million from the Regional Growth Fund to fund the new building, complemented by a £10 million investment from their own resources and a £15m HEFCE grant for equipment. NSIRC will become a world-class centre of excellence with a unique, industry-driven, integrated approach to research and postgraduate training in the field of structural integrity.

Submitting Institution

Brunel University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering, Mechanical Engineering, Interdisciplinary Engineering

3. Practical Waveform Engineering - Reshaping Today's Communication Systems

Summary of the impact

Practical Waveform Engineering, developed at Cardiff, is having a major impact on how modern- day microwave power amplifiers are designed, delivering real competitive advantages for global communications companies such as Nokia-Siemens-Networks and M/A-COM.

Economic impact is through reduced time-to-market and lower design costs, leading to high- performance power amplifier products. Examples include $40M revenue and employment of additional staff for M/A-Com, and the successful spin-off company Mesuro Ltd., generating revenue in excess of £2.5M.

Impact on practice is through successful demonstration of new device technologies and amplifier architectures, the introduction of PWE-based CAD models, and most significantly, the introduction of the "Cardiff Model" into mainstream simulation tools.

Environmental Impact is by improving the efficiency of power amplifiers and significantly reducing the carbon contribution of mobile communications systems, translating into savings of approximately £2.5M/year and a 17 kiloton reduction in CO2 emission for a typical EU network.

Submitting Institution

Cardiff University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Computation Theory and Mathematics
Technology: Communications Technologies

Advanced Materials Modelling for Earth and Space Application

Summary of the impact

Research in materials modelling by the Computational Science and Engineering Group (CSEG) is helping aerospace, defence and transport companies design advanced materials and new manufacturing processes. From lightweight components like aeroengine turbine blades to the control of magnetic fields to stabilise the next generation of International Space Station levitation experiments, CSEG is supporting innovations which have:

  • economic impact due to increase in competitiveness, market share, energy cost reduction and better use of raw materials;
  • environmental impact due to new lightweight recyclable materials and reduced energy processes;
  • increased public awareness of the importance of advanced materials and influenced government policy.

In the assessment period, CSEG collaborated closely with leading industries in steel-making (ArcelorMittal, Corus), primary aluminium (Dubal, Rusal, Norsk-Hydro, SAMI) and lightweight structural materials for transport and aerospace (European Space Agency, Rolls-Royce).

Submitting Institution

University of Greenwich

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

High - Strain Materials Characterisation

Summary of the impact

Research undertaken in the University of Cambridge Department of Physics has provided benchmark data on, and fundamental physical insights into, the high strain-rate response of materials, including powdered reactive metal compositions. The data have been used widely by QinetiQ plc. to support numerical modelling and product development in important industrial and defence applications. One outcome has been the development of a reactive metal perforator for the oil industry which significantly outperforms conventional devices. These devices `perforate' the region around a bore-hole, thereby substantially enhancing recovery, particularly in more difficult oil fields, and extending their economic viability. Over a million perforators have been deployed since their introduction in 2007.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Design for Manufacture and Reliability of Microsystems

Summary of the impact

The Computational Mechanics and Reliability Group at the University of Greenwich has been developing design and materials modelling expertise and tools for electronic manufacturing and reliability since the late 1990s. This case study details economic and environmental impacts and impacts on practitioners. In particular it shows how our expertise has:

  • substantially aided companies to assemble miniaturised electronic systems using environmentally friendly materials;
  • aided companies to predict reliability of new electronic systems before physical prototyping providing significant cost savings;
  • led to formation of spin out companies by our academic partners.

Submitting Institution

University of Greenwich

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering

Arrays - ultrasonic measurements enable reduced inspection costs in the naval, aerospace and nuclear sectors (for redaction)

Summary of the impact

Non-Destructive Testing (NDT) is essential for the safe and efficient operation of high-value engineering plant in many engineering sectors. Research into ultrasonic arrays at the University of Bristol has had a major impact on NDT. Exploitation of the techniques developed has directly led to combined sales of around [text removed for publication]. For major end-users of NDT such as Ontario Power Generation, BAE Systems and Rolls-Royce, the research is leading to reductions in inspection costs, [text removed for publication]. In addition, highly-skilled engineers have been trained through an Engineering Doctorate programme and are now leading the industrial development of new array inspections based on underlying research performed at Bristol.

Submitting Institution

University of Bristol

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

C4 - Bio Nano Consulting: a successful bio and nanotechnology consultancy business

Summary of the impact

Bio Nano Consulting (http://www.bio-nano-consulting.com) was established as an operating business in 2007 through a joint venture between Imperial College London and UCL, whose formation was underpinned by research produced by Professor Tony Cass's group at Imperial. The company is the first consultancy in Europe to focus on the increasingly important intersection between bio- and nanotechnology, and it facilitates the development and commercialisation of new biomedical and nanotechnology-based techniques. Since its start-up, the company has attracted numerous clients across the aerospace and diagnostics sectors, including Lockheed-Martin and [text removed for publication]. The company's activities have generated £6M worth of revenue and it has a growing portfolio. The company, which is based in London, currently has 8 full time employees.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Inorganic Chemistry, Physical Chemistry (incl. Structural)

Innovative Tunnel Backfill by Pneumatic Conveying of Dry Particulate Materials.

Summary of the impact

Research at GCU led to a novel method for backfilling pipeline tunnels providing the ability to fill tunnels three times more quickly than the traditional method resulting in a cost saving of £1.5M on a single project. This approach is now best practice at Murphy Pipelines Ltd (MPL) and features in current tenders to a value of £30M. The change in fill material lowered the carbon footprint by 5000 tonnes in a CEEQUAL award winning project, in addition, the removable fill material allows the recycling and re-use of tunnels, adding to the assets of the company and reducing costs.

Submitting Institution

Glasgow Caledonian University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Teletest Focus, Non-Destructive Testing Device

Summary of the impact

In Europe, there are over a million kilometres of oil pipelines, nearly a million kilometres of railway tracks, 600 offshore platforms and 300 suspension cable bridges. However, these assets are aging as they have been in use for many years and operate under harsh conditions. Brunel research team has advanced ultrasonic non-destructive testing (NDT) which has the ability to inspect buried pipes in their original place without removing the pipes or damaging their surrounding environment. In addition, the research was pursued to improve the NDT of rail tracks, storage tanks, flexible risers in offshore platforms and aircraft wires. The research has been commercially exploited and incorporated into Teletest Focus System Mark III by Plant Integrity Limited. The significant improvement has led Plant Integrity to terminate the sale of Teletest Mark III and introduce a new version, Teletest Focus System Mark IV, to the market in late 2010. Since then, Plant Integrity has doubled its turnover from sales of Teletest Focus System Mark IV from £1 million to £2 million in less than a year.

Submitting Institution

Brunel University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Next Generation Ejection Technology for the Bulk Food Sorting Industry

Summary of the impact

Driven by concerns over public health and intensifying legislative demands of the food industry in Europe and USA, the reliable and effective removal of unwanted objects from food products at a processing stage is increasingly important. The assurance of food quality and safety throughout the pre- and post-harvest food chain makes this issue even more significant. The effective implementation of relevant technological solutions for food safety and quality can dictate the survival, growth and competitive edge of some major sectors of the economy.

Food sorting machines are essential for eliminating unwanted food items from the production process to ensure that quality is maintained at the highest level for consumers. Key research at City University London has led to the development of a unique solenoid actuator valve (ejector), which opens and closes a high-pressure air jet in such machines to remove defective food items more accurately and efficiently from the production line.

The sorting machines which use it have a fivefold improvement in consumer food quality and safety and are 20% more energy efficient. Sales of these machines have been enhanced by 50% as a consequence of these improvements. The new valve delivers approximately 50% less food waste during the first sorting pass and offers a fourfold reduction in power consumption, contributing positively to global agricultural sustainability. The work undertaken has also assisted the industrial partner in opening up a new market for sorting machines for sorting plastics.

Submitting Institution

City University, London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Biomedical Engineering, Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies