Log in
International and national political negotiations and public debates about climate change mitigation policies can only progress with accurate and timely updates about the global carbon budget. Annual carbon updates have been supplied over many years, as a result of our work. The "Global Carbon Project" (GCP) has become the definitive source on carbon budgets for political and policy processes dealing with climate change mitigation and the GCP draws heavily on the School's work on the ocean carbon cycle, including ocean iron fertilisation, and its relevance to the contemporary global carbon budget. This is evidenced by its citation and influence on national (e.g. UK, Germany, Australia, USA, Sweden and Canada) and international (e.g. UN Framework Convention on Climate Change) deliberations.
Carbon dioxide sequestration is the process by which pressured CO2 is injected into a storage space within the Earth rather than released into the atmosphere. It is one of the major ways that carbon dioxide emissions can be controlled.
Research since 2004 by applied mathematicians at the University of Cambridge into the many different effects that might be encountered during this process has had considerable impact on government and industry groups in determining how the field is viewed and how it should and might be industrially developed. The work played a major role in the CO2CRC conferences and was subsequently reported to the Australian Government by the CO2CRC chair and organisers.
Impacts: I) Development of carbon credit certification schemes, including the expansion by the Gold Standard Foundation into land-use and forestry and the creation of the Natural Forest Standard by Ecometrica Ltd (both in 2012). II) Enhanced cross-sector collaboration for the quantification of forest-loss risks and implications for financing risks, through the 2011 creation of a Forest Finance Risk Network (FFRN).
Significance and reach: The Gold Standard Foundation represents nine forestry projects worldwide (benefiting >8,500 people) and over 1.8million ha. of Brazilian land is managed through two Natural Forest Standard projects. The FFRN connects 80 member organizations globally.
Underpinned by: Research into carbon emissions associated with forest-loss, undertaken at the University of Edinburgh (2005 onwards).
Research conducted at the Business School's Centre for Business and Climate Change since 2008 has:
This impact has been of international significance, reaching international standard setters, investors, corporations and other stakeholders. For example, 26 multinational companies paid to participate in carbon benchmarks conducted by a spin-out company created by the Centre and based on methods it developed. 90 global investors with US$7tr of assets have launched a shareholder action initiative inspired by the Centre's research. The world's leading carbon accounting standards body has adopted a conceptual framework developed by the Centre.
The Scottish Government is aiming to generate all of its electricity through renewable energy sources by 2020. Research by the University of Aberdeen has produced a freely available tool - the Windfarm Carbon Calculator - that has overhauled the planning process for windfarm developments in Scotland. In changing public policy and planning regulations, and informing the public debate, Aberdeen's calculator is helping the Government fulfil its pledge to become "the green energy powerhouse of Europe" while protecting some of the country's most environmentally fragile areas. It continues to guide the actions of politicians, planners, the wind industry, NGOs and community groups.
The claimed impact therefore is on: the environment, economy and commerce, public policies and services, practitioners and services.
In the REF impact period, our research on carbon-rich tropical peat swamp forests in Indonesia has been used to:
The Plymouth University marine carbon team was the first to investigate ecological consequences of ocean acidification, and carbon capture and storage leakage. The findings have impacted on US legislation and are key to the UK ocean acidification research programme. The research is highlighted in the European Science Foundations' Science Policy Briefing on Impacts of Ocean Acidification (2009), the United Nations' Emerging Issues Bulletin on `Environmental consequence of ocean acidification: a threat to food security' (2010), the US `National Strategy to Meet the Challenges of a Changing Ocean' (2010) and the Intergovernmental Panel on Climate Change `Ocean Acidification Report' (2011).
Research led by the School of Geography at the University of Leeds has enabled, for the first time, the use of on-the-ground observations to evaluate directly the role of tropical forests in the global carbon cycle and to assess their sensitivity to change. Findings from the research have had a significant impact on international debates on the future trajectory of climate change and appropriate policy responses, and are influencing national-scale efforts across the tropics to manage forests in the face of climate change and to reduce carbon emissions resulting from deforestation [D, E, G, H, J]. The success of this Leeds-led initiative has been achieved through the extensive network of scientists involved in this global forest observatory: more than 250 scientists from over 50 institutions across more than 30 countries are now involved.
Results from climate physics research at the University of Oxford have demonstrated that targets for cumulative carbon emissions, rather than greenhouse gas concentrations, are a more effective approach to limiting future climate change. This new approach and the resulting `trillionth tonne' concept have had substantial political and economic implications. Impacts since 2009 include (a) stimulus to policy developments; (b) influence on the business decisions of Shell e.g. to invest in a $1.35bn carbon capture and storage facility; and (c) significant public and media debate with a global reach.
A US$1.5 billion clean coal project at the YiHe Coal Field in Inner Mongolia was established in June 2011 as a joint venture between UK based Seamwell International Ltd and the state-owned China Energy Conservation and Environmental Protection Group. This is the first commercial project to employ the novel "Linear UCG Gasifier" design developed specifically for use under extremely weak underground roof conditions by Durucan, Korre and Shi at Imperial College London. Underground gasification under such conditions is made possible solely because of the novel gasifier design, which has opened up the potential to transform over 720 million tonnes of coal resource, that would otherwise have remained trapped, as a clean coal energy source for the next 20 years.