Log in
Salford Business School researchers were commissioned by PA Sport, the sports division of the Press Association, the Football Association Premier League (FA), and FootballDataCo, which handles the rights to football data for the FA, to develop the quantitative analysis and models for an objective index of football player performance. The official player ratings system of the English Premiership, Championship and the Scottish Premiership and first of its kind:
Now-casting is the prediction of the present, the very near future, and the very recent past. It has been developed within a research programme led by Lucrezia Reichlin at LBS. It is relevant because key economic statistics, particularly quarterly measures such as GDP, are available only with a delay. Now-casting exploits information which is published early and at higher frequencies than the target variable and generates early estimates before the offb01cial fb01gures become available.
Now-casting has signifb01cant infb02uence and impact. The techniques reported in this case study are in widespread use by central banks and policy institutions. Furthermore, this research has achieved successful commercial impact via Now-Casting Economics Limited.
HDM-4 is the most widely used system for road investment appraisal and decision making, generating improvements in public policies and services. Economic development and road agencies in developing countries are major users of the tool. HDM-4 has become the de facto standard used by the World Bank for its road investment appraisals and has been used to assess more than 200 projects since 2008, with some $29.5bn of World Bank loans, credits or grants drawn-down to fund these. Uptake of the tool has led to the commercial success of HDMGlobal, a consortium which manages the distribution and development of the software under exclusive licence from the World Road Association-PIARC, with revenues of £1.6m generated since 2008. HDM-4 has also been utilised for economic assessment and road systems investment management in the UK.
Researchers in Cambridge have developed a data standard for storing and exchanging data between different programs in the field of macromolecular NMR spectroscopy. The standard has been used as the foundation for the development of an open source software suite for NMR data analysis, leading to improved research tools which have been widely adopted by both industrial and academic research groups, who benefit from faster drug development times and lower development costs. The CCPN data standard is an integral part of major European collaborative efforts for NMR software integration, and is being used by the major public databases for protein structures and NMR data, namely Protein Data Bank in Europe (PDBe) and BioMagResBank.
This impact case study is based on a Knowledge Transfer Partnership (KTP) between the School of Mathematics, Statistics and Actuarial Science, University of Kent and KROHNE Ltd, a world leading manufacturer of industrial measuring instruments. These precision instruments (typically flow meters and density meters) need to be calibrated accurately before being used and this is an expensive and time-consuming process.
The purpose of the KTP was to use Bayesian methodology developed by Kent statisticians to establish a novel calibration procedure that improves on the existing procedure by incorporating historical records from calibration of previous instruments of the same type. This reduces substantially the number of test runs needed to calibrate a new instrument and will increase capacity by up to 50%.
The impact of the KTP, which was graded as `Outstanding', has been to change the knowledge and capability of the Company, so that they can improve the performance of their manufacturing process by implementing this novel calibration method. This has been achieved by adapting the underpinning Kent research to the specific context of the calibration problem, by running many calibrations to demonstrate the effectiveness of the method in practice, and by supporting the implementation of the new calibration method within the Company's core software.
Moreover, the project has changed the Company's thinking on fundamental science, particularly industrial mathematics. The value of historical data, and the usefulness of Bayesian methods, is now widely appreciated and training for staff in Bayesian Statistics is being introduced. Thus the project has not only changed the protocols of the Company, it has also changed their practice.
Our research team has developed new approaches to classifying demand series as `intermittent' and `lumpy', and devised new variants of the standard Croston's method for intermittent demand forecasting, which improve forecast accuracy and stock performance. These approaches have impacted the forecasting software of Syncron and Manugistics, through the team's consultancy advice and knowledge transfer. Subsequently, this impact has extended to Syncron International and JDA Software, which took over Manugistics. These companies' forecasting software packages have a combined client base turnover of over £200 billion per annum, and their clients benefit from substantial inventory savings from the new approaches adopted.
Targeted Projection Pursuit (TPP) — developed at Northumbria University — is a novel method for interactive exploration of high-dimension data sets without loss of information. The TPP method performs better than current dimension-reduction methods since it finds projections that best approximate a target view enhanced by certain prior knowledge about the data. "Valley Care" provides a Telecare service to over 5,000 customers as part of Northumbria Healthcare NHS Foundation Trust, and delivers a core service for vulnerable and elderly people (receiving an estimated 129,000 calls per annum) that allows them to live independently and remain in their homes longer. The service informs a wider UK ageing community as part of the NHS Foundation Trust.
Applying our research enabled the managers of Valley Care to establish the volume, type and frequency of calls, identify users at high risk, and to inform the manufacturers of the equipment how to update the database software. This enabled Valley Care managers and staff to analyse the information quickly in order to plan efficiently the work of call operators and social care workers. Our study also provided knowledge about usage patterns of the technology and valuably identified clients at high risk of falls. This is the first time that mathematical and statistical analysis of data sets of this type has been done in the UK and Europe.
As a result of applying the TPP method to its Call Centre multivariate data, Valley Care has been able to transform the quality and efficiency of its service, while operating within the same budget.
The School of Mathematics at Cardiff University has developed important statistical and mathematical models for forecasting consumer buying behaviour. Enhancements to classical models, inspired by extensively studying their statistical properties, have allowed us to exploit their vast potential to benefit the sales and marketing strategies of manufacturing and retail organisations. The research has been endorsed and applied by Nielsen, the #1 global market research organisation that provides services to clients in 100 countries. Nielsen has utilised the models to augment profits and retain their globally leading corporate position. This has led to a US$30 million investment and been used to benefit major consumer goods manufacturers such as Pepsi, Kraft, Unilever, Nestlé and Procter & Gamble. Therefore the impact claimed is financial. Moreover, impact is also measurable in terms of public engagement since the work has been disseminated at a wide range of national and international corporate events and conferences. Beneficiaries include Tesco, Sainsbury's, GlaxoSmithKline and Mindshare WW.
Research carried out from 2003 by Currie (Maxwell Institute) and his PhD students Djeundje, Kirkby and Richards (also Longevitas), and international collaborators Eilers and Durban, created new, flexible smoothing and forecasting methods. These methods are now widely used by insurance and pension providers to forecast mortality when determining pricing and reserving strategy for pensions. The methods were incorporated by the SME Longevitas in its forecasting package Projections Toolkit launched in 2009. This generated impact in the form of £400K turnover for Longevitas in licensing and consultancy fees, with further impact on the pricing and reserving strategies on Longevitas's customers. Since 2010 the methods have been adopted by the Office for National Statistics (ONS) to make the forecasts required to underpin public policy in pensions, social care and health and by The Continuous Mortality Investigation (CMI) to model and provide forecasts on mortality to the pensions and insurance industries. As a result, the research has changed practices in these advisory agencies and in the insurance industry.
Onchocerciasis (river blindness) is a debilitating disease of major public health importance in the wet tropics. The African Programme for Onchocerciasis Control (APOC) seeks to control or eliminate the disease in 19 countries. Accurate mapping of Loiasis (eye-worm) was a requirement for implementation of APOC's mass-treatment prophylactic medication programme in order to mitigate against serious adverse reactions to the Onchocerciasis medication in areas also highly endemic for Loiasis. Model-based geostatistical methods developed at Lancaster were used to obtain the required maps and contributed to a change in practice of APOC in a major health programme in Africa. Our maps are used to plan the delivery of the mass-treatment programme to rural communities throughout the APOC countries, an estimated total population of 115 million.