Similar case studies

REF impact found 19 Case Studies

Currently displayed text from case study:

2. Impact of research into strained silicon on the electronics and energy sectors

Summary of the impact

Research carried out at Warwick into the growth of silicon-based layered semiconductors has had a variety of impacts in the fields of microelectronics and solar energy generation. In 2004, a spin- out company AdvanceSis was created to exploit the patent portfolio of Warwick's NanoSilicon Group, with an initial £300 k of Regional Development Fund support. The company, having focused on the business of solar energy generation through concentrator photovoltaic (CPV) technology and renamed Circadian Solar, was valued at £3.5 million by the end of 2011. Further impact of the Warwick silicon research, in the period since 2008, has come in the form of joint R&D programmes with companies in the electronics and ICT sectors, including supplying advanced semiconductor materials and by providing highly skilled employees trained in the research group.

Submitting Institution

University of Warwick

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Electrical and Electronic Engineering, Materials Engineering

Molecular Beam Epitaxy applied to quantum devices for industrial applications

Summary of the impact

This University of Manchester research underpins UK industry's global position in millimetre- wave imaging and ultra-high-precision sensing. These are key technologies in a range of industrial, medical and consumer electronics applications. The devices and methods developed by the research team are now used by a range of companies leading to economic impacts for the UK in strong export markets. In this case study we provide examples of impacts that support commercial sales in excess of £300m by UK SME and FTSE-listed companies in three sectors: automotive radar (e2v), terahertz imaging (TeraView), and linear encoders (Renishaw PLC).

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Engineering: Materials Engineering

Large semiconductor crystals for security and medical imaging (Kromek)

Summary of the impact

Research on vapour growth of semiconductor compounds led to a key breakthrough in growing large crystals which form the basis for sensitive X-and gamma-ray detectors. The process was commercialised by a Durham University spin-out company, Kromek Ltd., which floated on AIM at £55M and has over 100 employees in the UK and USA. The X-ray detectors are in use in Kromek's security systems for screening liquids at airports, significantly reducing restrictions on duty free goods. This application won the $400,000 international prize in the 2009 Global Security Challenge. The company also markets gamma-ray detectors for nuclear isotope identification. These have won contracts totalling $7.5M from the US Defense Threat Reduction Agency and are in use at Fukushima.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Photonic crystal LEDs

Summary of the impact

Implementation of photonic quasi-crystals on light emitting diodes (LEDs) can produce more light using less energy. This technology was brought to the global market via the successful commercialisation of laboratory devices derived from research in nanophotonics and the subsequent development of photonic quasi-crystals by a multi-disciplinary team from the University of Southampton. The intellectual property of the technology was acquired and adopted in 2008 by Luxtaltek Corporation, a global manufacturer of LEDs. In the period 2008-2012 Luxtaltek Corporation, made total profits of £35 million utilising the photonic quasi-crystal LED technology, employing more than 300 people in its production facilities.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Materials Engineering
Technology: Communications Technologies

Raman thermography – Enabling semiconductor companies to improve the reliability, performance and lifetimes of their devices

Summary of the impact

Raman thermography, a new technique for measuring channel temperature in semiconductor electronic devices developed at the University of Bristol, has been used by many companies to characterise their semiconductor devices. The technology has enabled companies to develop more robust, reliable, higher performing devices and circuits for high-end space, radar, communication and power conversion applications. This is illustrated here in detail on the example of the company, United Monolithic Semiconductor (UMS) (Germany-France), which used the technique to improve the lifetime of its Gallium Nitride (GaN) and Gallium Arsenide (GaAs) semiconductor devices so that they meet customer requirements for product qualification. Corresponding impact resulted for the companies TriQuint (USA), Northrup Grumman (USA), QinetiQ (UK), Selex Galileo (UK & Italy), NXP (UK & Netherlands), Thales Alenia Spaciale (France), Sharp (Japan) and Hitachi Cable (Japan).

Submitting Institution

University of Bristol

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Nanotechnology

The development and exploitation of Terahertz technology

Summary of the impact

The development by Cambridge University staff of compact semiconductor sources and detectors of Terahertz radiation has opened up this part of the electromagnetic spectrum to commercial use for the first time, enabling many applications. In medicine these applications include the analysis of drugs and the detection and imaging of cancer; in security applications the detection and imaging of explosives; and in the semiconductor industry the detection and imaging of buried defects in semiconductor wafers. High power Terahertz lasers are used in gas sensors, for imaging and as local oscillators. This technology has been exploited by a spin-off company TeraView which has 25 employees, has raised £16M in funding, £3.5M since 2008, and has sold 70 imaging systems, half since 2008 at an average cost of $300K each.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Quantum and classical atomistic methods to enable improved processing and performance of materials

Summary of the impact

This study describes two atomistic methods that have been used to explain better the behaviour and improve performance of materials. The research at Loughborough University from 2006-2013 has led to improved awareness and understanding in the areas of thin film growth and in irradiated structural materials for nuclear power. It has also led to changes in the operational models that Atomic Weapons Establishment (AWE) use. One of the algorithms developed has been incorporated into standard quantum chemistry packages, due to its increased accuracy and efficiency. The outcomes of the research have also contributed to changing UK government policy with regards to working with India in the area of nuclear research.

Submitting Institution

Loughborough University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics

A New Manufacturing, Research and Development Centre for e2v

Summary of the impact

Our research on semiconductor materials and devices has led to the establishment by e2v Technologies of a combined manufacturing, research and development facility within the School of Physics and Astronomy. We have adapted and transferred device simulation software to e2v, and have provided epitaxially-grown semiconductors and access to fabrication facilities which have been used in their manufacturing processes. Devices fabricated within the facility, which was opened in 2011, have generated sales of £7M for e2v. This initiative has also led to shifts in the investment priorities of e2v, and mitigated risks to the company arising from import restrictions associated with the US International Traffic in Arms Regulations (ITAR).

Submitting Institution

University of Nottingham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Novel Quantum Cascade Laser technology leads to new products, processes and market opportunities

Summary of the impact

The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Other Physical Sciences

Enabling SEMATECH and industrial member companies to improve their transistor technology

Summary of the impact

Researchers within the Department of Physics and Astronomy at UCL have investigated the properties of defects in bulk HfO2 and at Si/SiOx/HfO2 interfaces. Results have been used by an industrial partner, SEMATECH (SMT), to improve the quality and reliability of high-performance microelectronic devices based on transistors. This has helped SMT to meet project objectives on behalf of member companies such as Intel and IBM, and UCL research results have been consistently highly evaluated by these companies. Recommendations made by SMT have been implemented by industrial partners in their currently manufactured devices, such as the 22nm process technology released by Intel in 2011.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies