Similar case studies

REF impact found 19 Case Studies

Currently displayed text from case study:

Improved matching of therapeutic platelet concentrates for cancer patients and neonates- Ouewhand

Summary of the impact

Annually in the UK ~110,000 donor platelet concentrates are used to prevent bleeding in cancer patients and ~660 newborns are born with an increased risk of bleeding because of a low platelet count caused by maternal platelet antibodies. These newborns and ~10% of the cancer patients require donor platelet transfusions matched for the platelet antibody because non-matched donor platelets are clinically less effective. University researchers have developed better methods for platelet antibody detection and typing and as a direct consequence of this research NHS Blood and Transplant (NHSBT) has from 2009 onwards been able to make platelet transfusions safer and clinically more effective, thereby reducing the number of severe, and on occasions life- threatening, bleeding episodes.

Submitting Institution

University of Cambridge

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology

UOA05-16: BioAnaLab Limited: a contract analytical laboratory

Summary of the impact

BioAnaLab's mission is to advance innovative biopharmaceuticals, such as therapeutic antibodies for cancer treatment, into the clinic. From 1995, the University of Oxford pioneered methodology essential for validating top quality therapeutic antibodies and monitoring their activity in patients. This expertise led to the establishment in 2002 of BioAnaLab, a successful Isis Innovation spin-out company. By 2009 BioAnaLab employed 50 staff providing analytical services to approximately 100 pharmaceutical and biotechnology companies worldwide and had annual sales exceeding £3.13 million. BioAnaLab was subsequently acquired in 2009 by Millipore Corporation to become an integral part of Merck/Millipore's global drug discovery unit.

Submitting Institution

University of Oxford

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology, Oncology and Carcinogenesis, Pharmacology and Pharmaceutical Sciences

Global health impact and economic impact from the development of FreeliteĀ®

Summary of the impact

Research conducted by Professor Jo Bradwell at the University of Birmingham provided the basis of the commercially available diagnostic test Freelite®, which quantifies free immunoglobulin light chains in serum and was the first and only assay for the diagnosis and monitoring of Multiple Myeloma (MM). MM is a cancer of immunoglobulin producing plasma cells in the bone marrow. Freelite® has markedly improved the diagnosis and management of MM, is helpful in the diagnosis of all B cell lymphoid neoplasias and provides prognostic information for premalignant conditions present in over 3% of people over 50 years of age. Freelite was commercialised by the University of Birmingham spinout company, the Binding Site, which has achieved worldwide sales, with over 360,000 tests being sold per month in 90 countries and an ongoing 25% annual growth in sales. The company provides annual revenue of £55m and employment for 620 people in the UK and abroad. An improved second generation of tests has been developed by Professor Mark Drayson at the University of Birmingham, which has been commercialised by a second University spinout company Serascience, which started marketing a point of care free light chain diagnostic test worldwide in April 2013.

Submitting Institution

University of Birmingham

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Immunology, Oncology and Carcinogenesis

UoA01-15: Accurate Diagnosis: Improving Survival Rates for Children with Cancer

Summary of the impact

The production and use of monoclonal antibody, ALK1, by researchers in Oxford has been pivotal in enabling the accurate diagnosis and treatment of Anaplastic Large Cell Lymphoma (ALCL). This research also led to the formal classification of ALK-positive ALCL tumours by the World Health Organization in 2008. While ALCL accounts for 10-20% of paediatric/adolescent non-Hodgkin's lymphoma worldwide, its diagnosis had been problematical due to the absence of suitable reagents. This was remedied in 1997 when Oxford researchers created the first monoclonal antibody, ALK1, recognising anaplastic lymphoma kinase (ALK), a molecule that is associated with up to 90% of ALCL.

Submitting Institution

University of Oxford

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Immunology, Oncology and Carcinogenesis

Antibody sequence and structure analysis assists biologic drug design

Summary of the impact

Research by Dr Andrew Martin at the UCL Research Department of Structural & Molecular Biology has led to a series of antibody-related tools being made available for free use over the Web. One of these, Abysis, has been visited over 360,000 times by over 8,000 users. Abysis has also been released under a commercial license and has been purchased by companies ranging from small biotechs to large pharma for use in their antibody therapeutic development pipelines, allowing them to identify unusual features of their sequences and to improve strategies for humanisation. Martin has also acted as an expert witness for drug companies in patent disputes.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Immunology

Development of Campath antibody as a therapeutic-Clark & Waldmann

Summary of the impact

Research into modified Fc regions for therapeutic antibodies has resulted in the development of antibodies with novel and optimised functions. An aglycosylated anti-CD3 antibody called otelixizumab has reached phase 3 clinical trials with GSK and a novel antibody for treatment of fetomaternal alloimmune thrombocytopenia has been tested in human volunteers. The patented technology has been licensed to Pfizer and to GSK for incorporation into their therapeutic antibody programmes with four of these already in clinical trials (tanezumab, ponezumab, RN316 & RN564). Licensing revenue totalling £3.2 million has been returned to the University's company Cambridge Enterprise Ltd in the impact period. In addition, consultancy and advisory services on antibody engineering have been provided to a number of other biopharma companies.

Submitting Institution

University of Cambridge

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology, Oncology and Carcinogenesis

"Shark-antibodies" as a platform for biologics drug development

Summary of the impact

Together the University of Aberdeen and Aberdeen city have become a major centre for biologics, the synthesis of medicines from compounds derived from living organisms. Commerce and industry have invested heavily in the process, creating specialist knowledge, jobs and an internationally-recognised network of expertise that promises further growth. This has arisen from ground-breaking research in Aberdeen into the VNAR antibody class that are the smallest binding sites so far identified in the animal kingdom and led to the validation of a new drug discovery platform. Spin-out companies were created (Haptogen Ltd, Cyclogenix Ltd and the pre-commercialisation vehicle Elasmogen) to exploit the emerging technology, which has completed successful efficacy trials in several animal models including late stage pre-clinical models, with trials in humans expected.

The claimed impact is therefore that: spin-outs have been created, highly skilled people have taken up specialist roles in companies; industry and venture money has been invested in patent protected research and development, business has adopted a new technology, award winning industry collaborations have been forged and jobs have been created.

Submitting Institution

University of Aberdeen

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology

The V5 epitope tag: technology for vaccines, diagnostics and disease treatment.

Summary of the impact

Proteins are fundamental to life and to many drugs, vaccines and new types of applied medicine with engineered cells. For this work, it is often essential to tag proteins to enable their identification and purification. The V5 tag, which was developed in St Andrews, is used very widely in this role and has some key advantages over alternatives.

Key impacts are:

  • V5 tag used in 112 issued patents since 1/1/2008, focussed on treatment of cancer, Alzheimer's, viral infection etc.
  • The reagents for V5 tag detection had sales exceeding £600k and generated royalties for St Andrews of £298k (Jan 2008 to Jul 2013).
  • Over 130 different products currently available from commercial suppliers make use of V5 technology.
  • Recent vaccine and diagnostics development has relied on V5 technology.

Submitting Institution

University of St Andrews

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology, Medical Microbiology

Treatment of cancer with monoclonal antibodies

Summary of the impact

Southampton research underpins the clinical development of a new class of anti-cancer monoclonal antibodies (mAb), such as anti-CD40, anti-CD27 and anti-CD20. The most advanced is a next generation, fully human drug, ofatumumab (commercialised by GlaxoSmithKline/Genmab; trade-name Arzerra) approved in Oct 2009 to treat advanced chronic lymphocytic leukaemia. Its approval was based on a 42% response rate in patients who had failed current `best in class' treatment. Arzerra is now a multi-million dollar drug, launched in 26 countries (and growing) and is being used in 19 on-going clinical trials worldwide for diseases ranging from lymphoma to rheumatoid arthritis and multiple sclerosis. Southampton's work has inspired follow-on funding from government and industry in excess of £12m.

Submitting Institution

University of Southampton

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Immunology, Oncology and Carcinogenesis

Commercialisation of a Novel Diagnostic Test for Invasive Pulmonary Aspergillosis

Summary of the impact

Invasive pulmonary aspergillosis (IPA) is a frequently fatal disease of haematological malignancy patients, caused by fungi from the genus Aspergillus. Dr Christopher Thornton has developed and commercialised a novel point-of-care test for the diagnosis of IPA with an Aspergillus-specific monoclonal antibody (mAb) JF5 generated using hybridoma technology. Using this mAb, he has developed a lateral-flow device (LFD) for the rapid detection of Aspergillus antigen in human serum and bronchoalveolar lavage fluids (BALf) that signifies active infection. Commercial exploitation of the patented technology has been met through the establishment of a University of Exeter spin-out company, Isca Diagnostics Limited.

Submitting Institution

University of Exeter

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Immunology, Oncology and Carcinogenesis

Filter Impact Case Studies

Download Impact Case Studies