Log in
In Europe, there are over a million kilometres of oil pipelines, nearly a million kilometres of railway tracks, 600 offshore platforms and 300 suspension cable bridges. However, these assets are aging as they have been in use for many years and operate under harsh conditions. Brunel research team has advanced ultrasonic non-destructive testing (NDT) which has the ability to inspect buried pipes in their original place without removing the pipes or damaging their surrounding environment. In addition, the research was pursued to improve the NDT of rail tracks, storage tanks, flexible risers in offshore platforms and aircraft wires. The research has been commercially exploited and incorporated into Teletest Focus System Mark III by Plant Integrity Limited. The significant improvement has led Plant Integrity to terminate the sale of Teletest Mark III and introduce a new version, Teletest Focus System Mark IV, to the market in late 2010. Since then, Plant Integrity has doubled its turnover from sales of Teletest Focus System Mark IV from £1 million to £2 million in less than a year.
Translational research created new techniques for medical biosignal analysis in both the ECG and Pulse Oximetry areas. CardioDigital, a university spin-out company, was incorporated in 2001 to commercialise the research and became a world leader in the development and supply of signal analysis solutions for the medical device industry. The technology has been applied to defibrillation techniques to improve survival rates following sudden cardiac arrest, with a range of closely linked pulse oximetry based technologies applicable for general ward use. The technologies provide both enhanced and extended performance of the pulse oximeter leading to improved patient care and hospital workflows.
This Keele University research into advanced signal processing and classification methods has led to novel algorithms capable of isolating subtle patterns in complex data. This has been applied in two highly significant application areas: first to the problem of image source identification and second to the problem of unobtrusive but highly secure authentication methods. In the first case this has enabled images captured by mobile phone cameras to be reliably and evidentially linked to source devices. This has huge applicability to those fighting terrorism, paedophile rings and civil unrest by extending detection capabilities to mobile phones in an era in which they are rapidly replacing dedicated cameras. It helps to prove, for example, that a photograph entered as evidence was captured by a specific mobile phone. As most phones can be tied to their user or owner this is extremely important to the successful detection and prosecution of offenders.
In the second case it has enabled criminal record checks to be carried out securely online where previous paper-based systems were both too slow for purpose (taking weeks or months) and inherently insecure, leaving key posts unfilled in the health care industries and education sector; so benefitting the public by solving a problem that was having a negative impact on the running of these public services.
In this case study, two specific examples of impact are reported. One is cost-effective and high-performance smart antennas for the offender tagging system and marine navigation system for Guidance Navigation Ltd (Guidance). This collaboration has resulted in new and leading products and also helped the company to win a range of contracts. The other example is the development of a novel intelligent drilling system_for Zetica Ltd. This system can detect deeply buried unexploded ordinance and other objects. It has given Zetica a unique new product to significantly improve operational safety and win business worldwide.
The commercialisation of Newcastle University's pioneering research in underwater acoustic communication has created market leading products, achieving economic impact, enhanced subsea operations, an award for improved diver safety and reduced impact of subsea acoustic emissions on marine mammals. Our research outputs have been incorporated in a range of products manufactured under licence by Tritech International Ltd. Since 2008 the MicronNav product has become the preferred solution for tracking underwater remotely operated vehicles from manufacturers including Seabotix Inc and Videoray Inc, with over £2M of licensed products sold to date. Bespoke high performance data telemetry systems have also enabled previously impossible subsea operations to be completed.
Research at the University of Cambridge Department of Engineering (DoEng) created a novel wideband active Distributed Antenna System (DAS). The research was commercialised by Zinwave, a DoEng spin-off company [text removed for publication]. Zinwave has developed a network of over 40 System Integrator partners to deliver DAS solutions to enterprises and building owners. It has also been selected by Verizon Wireless, one of the largest mobile operators in the world, to support its 4G network rollout in the USA. The first sales were recorded in 2009. Zinwave systems have been successfully deployed across the world. Zinwave's annual revenue has grown three-fold since first sales and was nearly GBP3M in the year ending December 2012.
Practical Waveform Engineering, developed at Cardiff, is having a major impact on how modern- day microwave power amplifiers are designed, delivering real competitive advantages for global communications companies such as Nokia-Siemens-Networks and M/A-COM.
Economic impact is through reduced time-to-market and lower design costs, leading to high- performance power amplifier products. Examples include $40M revenue and employment of additional staff for M/A-Com, and the successful spin-off company Mesuro Ltd., generating revenue in excess of £2.5M.
Impact on practice is through successful demonstration of new device technologies and amplifier architectures, the introduction of PWE-based CAD models, and most significantly, the introduction of the "Cardiff Model" into mainstream simulation tools.
Environmental Impact is by improving the efficiency of power amplifiers and significantly reducing the carbon contribution of mobile communications systems, translating into savings of approximately £2.5M/year and a 17 kiloton reduction in CO2 emission for a typical EU network.
The GRANIT system is a non-destructive technique for assessing the condition of rock bolts and ground anchors used to support structures such as tunnels. It applies a small impulse to the bolt and interprets the resulting vibration response to provide estimates of load and unbonded length. Initial development of the system was based on the findings of EPSRC projects in tunnels undertaken by the Universities of Aberdeen and Bradford from 1989-1997, resulting in an empirically based method. However, research undertaken at the University of Aberdeen since 1998 has provided the understanding of the process and developed the fundamental engineering science needed to underpin the development of a full commercial system. The GRANIT system is patented, and has been subject to worldwide licence to Halcrow who have undertaken testing and provided a method of ensuring the safety of mines, tunnels and similar structures. Halcrow received the NCE award for Technical Innovation Award for GRANIT in December 2010. The impact of the research has been in part economic, but largely on practitioners and professional services.
Two decades of radar research at The University of Birmingham have had profound impacts on automotive radar systems. This is demonstrated by specific Jaguar LandRover products: adaptive cruise control (ACC); blind spot monitoring; and lane change merge aid. The first two of these are now available across the Jaguar and Land Rover ranges while the third is ready for launch in 2014. Wider economic and road safety impacts are occurring as the technology cascades down from the luxury vehicle market and achieves wider adoption. Automotive radar makes a significant financial contribution to Jaguar LandRover (JLR). Birmingham research has been vital to the development of this industry, in establishing fundamental scientific feasibility and technological viability and in solving deep technical challenges.
The performance of absolute distance measuring systems has been improved in terms of accuracy, traceability, reliability and cost through the introduction of new methodology arising from research at the University of Oxford. This has brought commercial benefit to a German company making measurement systems, through the creation of a new product line. New capabilities for measurement have been delivered to a first customer in Germany. The research has also resulted in the establishment of new activity at the National Physical Laboratory, and influenced UK and European technology roadmaps for future manufacturing.