Similar case studies

REF impact found 20 Case Studies

Currently displayed text from case study:

Introduction of percutaneous pulmonary valve implantation into clinical practice

Summary of the impact

Percutaneous heart valve implantation is an innovative, minimally invasive alternative to open-heart surgery for treating valvular heart disease. Over the last 10 years, research at UCL has advanced the original method of minimally invasive valve implantation in the pulmonary position. Over 5,000 patients have now benefitted from this procedure and have therefore avoided open-heart surgery. The research has been used for regulatory approval of the Melody device in Europe and Canada (CE marking) and has led to FDA approval in the USA for both the device and procedure and NICE approval in the UK.

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology

Improved surgical outcomes achieved through perioperative circulatory optimisation guided by oesophageal Doppler

Summary of the impact

As a result of research undertaken by Professor Mervyn Singer and colleagues at UCL, the oesophageal Doppler haemodynamic monitoring device is now a standard of care in intensive care units and operating theatres. The research underpinned the development of the CardioQ Oesophageal Doppler Monitor that guides optimisation of the circulation in critically ill and perioperative patients. In multiple studies its use has led to significant reductions in postoperative complication rates and length of stay in patients undergoing high-risk surgery. Over 500,000 patients have now benefitted from this technology that, between 2008-13, generated over £33m in sales for its manufacturer, Deltex Medical. The device is recommended in NICE guidance and has been identified by the Department of Health as one of six high impact innovations to be implemented fully across the NHS.

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Clinical Sciences

Changes to health policy and medical device regulation following analysis of metal-on-metal hip replacements

Summary of the impact

UCL research into metal-on-metal (MOM) hip replacements has developed evidence affecting the 1.5 million patients with MOM hips worldwide and led, indirectly, to a change in the regulation of all medical devices by the US Food and Drug Administration and the UK Medicines and Healthcare Products Regulatory Agency (MHRA). Direct impacts include stimulation of the first global retrieval programme for medical implants, [text removed for publication], and the development of a change in the MHRA protocol used to monitor all UK MOM hip patients. These have led to improvements in the quality of patients' lives after redo surgery, and supported litigation cases worth billions of dollars against health providers — including Johnson & Johnson — to fund compensation and earlier-than-expected redo hip operations. Public awareness of issues with MOM hips has been stimulated through widespread media coverage and creation of information resources by charities and regulatory bodies.

Submitting Institution

University College London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Improved Hip Replacement Fixation Techniques to Increase Implant Longevity

Summary of the impact

Our research has developed improved hip replacement fixation techniques, which have improved the biomechanical stability of implanted artificial joints. These techniques have been employed by orthopaedic surgeons, for example at Mid-Essex Hospitals Services Trust (MEHT), in primary and revision total hip replacement operations. As a result, the number of patients requiring revision hip surgery due to cup loosening has fallen by 50%. Additionally, these techniques have reduced the recovery time per operation by 3-5 days, which in addition to benefitting the patient have also resulted in an average saving per operation of £1,200.

Submitting Institution

Anglia Ruskin University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Application of magnetic nanoparticles in the treatment of breast cancer

Summary of the impact

Groundbreaking UCL research and development of magnetic nanoparticles for biomedical applications led to the introduction in 2012 of the world's first licensed nanoparticulate injectable medical device, the Sienna+ tracer, and its associated detection system, the SentiMag. A UCL spinout company, Endomagnetics Ltd., has introduced this new technology to better diagnose and treat cancer without the need for invasive surgery. The system uses magnetic materials, rather than radioisotopes, to locate the sentinel lymph nodes that are the key indicators of the spread of cancer away from the primary tumour site. As well as improving patient outcomes, the system considerably improves hospital workflow and efficiency since, unlike radioisotopes, the injectable magnetic tracer (Sienna+) is readily available and requires no special handling

Submitting Institution

University College London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Neurosciences

Artificial cervical joint improves patient outcome, reduces healthcare costs worldwide and benefits business

Summary of the impact

An artificial cervical joint, designed by Mr Steven Gill, honorary Chair in the University of Bristol and consultant in Neurosurgery at Frenchay Hospital, is widely used for the treatment of degenerative cervical disc disease. Patients who have received the device have retained neck mobility and have experienced less neck pain and better neurological function than patients who have undergone conventional treatment involving fusion of the vertebrae. The device has also yielded substantial long-term savings as far fewer patients require secondary surgery. Gill's device was the first artificial cervical joint approved by the US Food and Drug Administration (FDA), in 2007. In early 2008, the global medical technology company Medtronic launched the device commercially in the US. The device is now used in 60 countries and has so far generated more than $137 million in sales.

Submitting Institution

University of Bristol

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences

Research into trimaran hullforms exploited in novel ship designs by commercial and naval shipping

Summary of the impact

A number of trimaran ocean-going ships, based on original designs conceived by UCL researchers, are currently in use. RV Triton, the demonstrator trimaran, is presently employed as a patrol vessel to provide Australian Customs and Border Protection with increased capability and lower fuel consumption compared to a monohull. The Independence Class of littoral combat ships currently entering service in the US Navy offers improved military capability and one-third lower fuel consumption, with the ensuing benefit of creating almost 2,000 jobs at the shipbuilder, Austal. Similarly, trimaran ferries with their inherent stability have improved passenger comfort and their reduced fuel consumption has lowered operating costs.

Submitting Institution

University College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Maritime Engineering

Technological solutions to facilitate independence in the community for people with long term conditions affecting their mobility

Summary of the impact

The Orthotic Research & Locomotor Assessment Unit (ORLAU) (http://www.rjah.nhs.uk/ORLAU) has run multidisciplinary services to improve the function and lifestyle of severely disabled patients since 1975. New specialist clinical services have been established, based on research and development activity. The effectiveness of these services has been the subject of further investigations. Work has focused on the development of novel technology (in gait analysis and orthotics) and increasing understanding of human movement. Conditions treated include cerebral palsy, spinal cord injury, neuromuscular disorders, arthritis and stroke. Technological developments have led to licencing within the commercial sector. ORLAU has also contributed to the development of national and international clinical education and guidelines.

Submitting Institution

Keele University

Unit of Assessment

General Engineering

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Human Movement and Sports Science, Neurosciences

Joint Venture: Working in partnership to develop a unique hip replacement treatment

Summary of the impact

The University of Southampton's world-leading record in bioengineering continues to deliver significant benefits, resulting from recent research crucial to the development, pre-clinical verification and CE-marking of a revolutionary hip-resurfacing implant. In the wake of growing concerns over some previous implant designs, this work has positively impacted on a wide range of audiences: over 9800 patients have received the new implants with excellent early clinical results at two years' follow-up. Within 4 years UK PLC benefited with considerable additional turnover [exact figure removed for publication], a majority from abroad, and the technology attracted three years of investment for a start-up company at Southampton Science Park. This award-winning knowledge transferring research has been widely acknowledged as an example of best practice, and has increased appreciation of science and technology further through outreach.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Design of a new total knee replacement

Summary of the impact

Each year an estimated 1,324,000 artificial knee joints (total knee replacements — TKR) are implanted worldwide; an estimated third of these utilise an implant manufactured by DePuy International. Underlying computer-based research performed by the Bioengineering Sciences Research Group has played a central role during the development of a new design of TKR for DePuy. The design programme, the biggest in DePuy's history, had a budget in excess of US$10 million and aimed to replace the existing TKR system, which had annual sales of approximately US$100 million.

Between 2007-2010, DePuy adopted the computational techniques developed by the group as screening tools to (i) assess polyethylene wear and (ii) account for the effects of surgical variability during the early design phases. DePuy states "This research allowed us to choose the most robust solution when proceeding to mechanical testing and saved years in the design cycle. Patients also benefit from increased confidence in an implant that is able to withstand the rigors of use".

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

Filter Impact Case Studies

Download Impact Case Studies