Similar case studies

REF impact found 9 Case Studies

Currently displayed text from case study:

CHEM04 - Ozone-depleting halogens in the atmosphere

Summary of the impact

The international Montreal Protocol limits the production of stratospheric-ozone depleting substances that contain chlorine and bromine. York researchers used the Atmospheric Chemistry Experiment (ACE) satellite to monitor the decay of halogen-containing molecules in the stratosphere and to re-evaluate their atmospheric lifetimes. This York research also determined that oceans represent a vast reservoir of organohalogens, which are released to air and impact significantly on ozone destruction. The research results have been incorporated into the conclusions of the World Meteorological Organization/United Nations Environment Programme (WMO/UNEP) Scientific Assessments on Ozone Depletion, the pre-eminent knowledge base used for international policy and domestic legislation. Experimental infrastructure created in this York research now contributes to UK Government obligations under the United Nations Framework Convention on Climate Change (UNFCCC) and informs it of long-term atmospheric change.

Submitting Institution

University of York

Unit of Assessment

Chemistry

Summary Impact Type

Political

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Other Chemical Sciences

Development of abatement strategies and policies for air pollutants facilitated by the Master Chemical Mechanism

Summary of the impact

Air pollution is a major health concern and government policy driver. Leeds researchers and colleagues have developed a detailed chemical mechanism which describes reactions in the lower atmosphere leading to the formation of ozone and secondary particulate matter, key air pollutants. The so-called `master chemical mechanism' (MCM) is considered the `gold standard' and has been used by the UK government and industry groups to inform their position on EU legislation and by the US EPA to validate and extend their regulatory models. The Hong Kong Environmental Protection Department has used the MCM to identify key ozone precursors and provide evidence for abatement strategies.

Submitting Institution

University of Leeds

Unit of Assessment

Chemistry

Summary Impact Type

Political

Research Subject Area(s)

Chemical Sciences: Theoretical and Computational Chemistry, Other Chemical Sciences

CH1: Bristol Research Influences Global Response to Ozone-Depleting and Greenhouse Gases

Summary of the impact

Successful policy formulation and effective action on ozone depletion and climate change, both of which have profound environmental implications, depend on the availability of credible data on atmospheric gases. Research conducted in the School of Chemistry at the University of Bristol between 1992 and 2013 has played a leading role in global efforts to achieve reliable, long-term measurement of climatically important gases such as CO2, CH4 and N2O. When combined with models of atmospheric gas transport, these observations provide an independent means of assessing natural and man-made emissions. This work is used by the UK's Department of Energy and Climate Change (DECC) for monitoring compliance with international and domestic legislation, identifying priorities for improving inventory accuracy, assessing the UK's progress towards targets set in the Montreal and Kyoto Protocols, evaluating the impact of policy, and informing international negotiations. These data have been central to recent World Meteorological Office (WMO) Scientific Assessments of Ozone Depletion produced between 2007 and 2010 and to the Nobel Prize-winning Inter Governmental Panel on Climate Change (IPCC) Assessment of Climate Change published in 2007.

Submitting Institution

University of Bristol

Unit of Assessment

Chemistry

Summary Impact Type

Environmental

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Earth Sciences: Atmospheric Sciences

Halocarbons: Impacts on Ozone Depletion and Global Warming

Summary of the impact

Halocarbons in the atmosphere can be both ozone-depleting and greenhouse gases. Our halocarbon research has formed a vital part of the science that has underpinned the Montreal Protocol on `Substances that Deplete the Ozone Layer'. Whilst this Protocol was originally ratified in 1987, it is amended at regular intervals based on the latest scientific evidence as reported through quadrennial World Meteorological Organisation (WMO) Ozone Assessments. Our research has contributed to the Assessments in 1994, 1998, 2002, 2006 and 2010, as well as IPCC (Intergovernmental Panel on Climate Change) assessments. These assessments have led directly to reductions in emissions of a large number of halocarbons and consequently major climate and health benefits worldwide; e.g. UEA research on methyl bromide and halons has led, via Montreal Protocol amendments, to a decline in atmospheric bromine between 2008-2013.

Submitting Institution

University of East Anglia

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Earth Sciences: Atmospheric Sciences, Oceanography

CHEM01 - Natural organic emissions and summertime UK air quality

Summary of the impact

Research performed at York during 2003-6 revealed the unexpectedly high level of organic emissions by trees in the UK during the hottest periods, catalysing the formation of smog. This research on causes of summertime air pollution informed UK government policy reports in 2008/9. It also resulted in on-going changes in modelling of biogenic emissions by DEFRA (Department for Environment Food and Rural Affairs), embedding the knowledge into all future government policy evaluations of air pollution. The Met Office and others have now improved their air quality forecasts provided to the public by adding the effect of natural emissions. The beneficiaries of the York research include government and those people at health risk from low air quality. The impact spans public policy, environmental policy and health.

Submitting Institution

University of York

Unit of Assessment

Chemistry

Summary Impact Type

Political

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Engineering: Environmental Engineering, Interdisciplinary Engineering

Climate Emission Metrics for Policymakers

Summary of the impact

Human activity leads to the emission of many greenhouse gases that differ from carbon dioxide (CO2) in their ability to cause climate change. International climate policy requires the use of an "exchange rate" to place emissions of such gases on a "CO2-equivalent" scale. These exchange rates are calculated using "climate emission metrics" (hereafter "metrics") which enable the comparison of the climate effect of the emission of a given gas with emissions of CO2. Research in the Unit has contributed directly to (i) the calculation of inputs required for such metrics, (ii) the compilation of listings of the effects for a large number of gases and (iii) the consideration of alternative metric formulations. During the assessment period this work has been used in the implementation of the first commitment period of the Kyoto Protocol (2008-2012) to the United Nations Framework Convention on Climate Change (UNFCCC), and in decisions and discussions (which began in 2005) on the implementation of the Kyoto Protocol's second commitment period (2013-2020), as well to intergovernmental debate on aspects of the use of metrics in climate agreements.

Submitting Institution

University of Reading

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Earth Sciences: Atmospheric Sciences
Economics: Applied Economics

Increasing public understanding of chemistry

Summary of the impact

The UCL Department of Chemistry has for many years run a far-reaching programme of outreach and public engagement that has deep roots in the department's research programme. Its schools outreach work has promoted chemistry and science among secondary school children, while contributions to blogs, newspapers, radio, and television have engaged diverse audiences from primary school children to the elderly. Millions of people have viewed television contributions, while tens of thousands have been reached in theatres and science fairs, with positive reviews and feedback confirming a stimulation of public interest in, and understanding of, chemistry.

Submitting Institution

University College London

Unit of Assessment

Chemistry

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry

Supporting regional businesses to use satellite derived data

Summary of the impact

University of Leicester research has developed, with funding from the European Regional Development Fund, a business support offer, Global Monitoring for Environment and Security (GMES) Space Technology Exchange Partnership (G-STEP) — which has led to a number of impacts:

Economic impacts via direct support of 40 East Midlands companies, including the creation of 3 new businesses, with a £950K GVA (Gross Value Added) to the companies and £2.9M in investment in the East Midlands. It has led to the employment of 20 Leicester graduates. Policy impacts via the Local Economic Partnership which has identified space as one of three emerging sectors for focussed development. Nationally, the emerging Satellite Applications Catapult has reviewed the G-Step delivery model to inform its own operation. Internationally, G-STEP led the NEREUS (Network of Regions in Europe Using Space) Earth Observation/GMES working group and produced the "The Growing Use of Space Across Europe", launched at the European Parliament in 2012.

Environmental benefits via the development of products which are having a positive impact on the environment including satellite enabled traffic management tools and high value crop management.

Submitting Institution

University of Leicester

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Environmental Sciences: Environmental Science and Management
Engineering: Environmental Engineering, Resources Engineering and Extractive Metallurgy

CH2: Climate Change and Air Quality: Interdisciplinary Research that is Transforming the Teaching of Chemistry across the World

Summary of the impact

Bristol ChemLabS (part of the School of Chemistry) has used School of Chemistry research on the atmosphere (air quality, atmospheric chemistry and the history of greenhouse gases on Earth) to enhance dramatically the quality and uptake of chemistry education in the UK and approximately 20 other nations. This radical advance has been achieved through ChemLabS' outreach activity, which has involved running more than 1,200 events for over 250,000 students over the past six years (and over 1,000 events since 2008). ChemLabS' atmospheric chemistry education packages are now being delivered in other countries, its textbooks/articles have been taken up across Europe, and it has trained more than 500 teachers directly. As a result of its activities, which are grounded in rigorous research, Bristol ChemLabS has been able to document increased interest in science and higher uptake at post-16 level.

Submitting Institution

University of Bristol

Unit of Assessment

Chemistry

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Earth Sciences: Atmospheric Sciences, Geochemistry

Filter Impact Case Studies

Download Impact Case Studies