Log in
Economic gains by oil and gas companies, improvements in professional practice in hydrocarbon exploration, and environmental benefits from identifying CO2 disposal sites have been achieved through a Cardiff-led consortium with industry. Building on research carried out since 2004, ten of the largest oil companies in the World have contributed to and benefited from understanding how faulted caprocks behave under specific geological conditions. Research at Cardiff has shown which families of faults and fractures make caprocks highly permeable, thus improving Industry's ability to predict if caprocks are able to prevent oil and gas reaching the surface.
Platinum Group Elements (PGE) are critical strategic metals because of their unrivalled applications in catalysts, fuel cells and electronics and cancer therapies. Research and analytical methods developed at Cardiff have impacted on exploration for new PGE deposits, and more efficient processing of PGE ores by international mining companies. A key milestone between 2009 and 2012 was the discovery of a 3 billion year old giant impact crater in West Greenland. This discovery is of major economic significance because all craters previously found in this size class are associated with multi-billion dollar mineral and/or hydrocarbon resources. It led to an intellectual property transaction worth CDN$ 2.1 million and discovery of nickel and PGE deposits in Greenland by North American Nickel Incorporated.
We have formulated and executed an extensive public engagement and outreach programme based on our leading technical and scientific involvement in the Herschel Space Observatory, a €1 billion astronomical satellite which was launched in 2009 and operated until April 2013. Herschel observed the Universe at far-infrared and submillimetre wavelengths with three scientific instruments, one of which (SPIRE) was built by an international team led by the Cardiff Astronomy Instrumentation Group, and Cardiff astronomers have been at the forefront in scientific use of Herschel and SPIRE. The beneficiaries of our PR and outreach programme include schoolchildren teachers, the media and the general public. The programme has achieved high exposure and impact locally, nationally and internationally. It provides inspirational personal contact and up-to- date material and information which has stimulated widespread and continuing interest in Herschel and also helped to raise the profile of STEM subjects, ultimately benefiting the economy.
Research in quantum-mechanical methods, conducted at the School of Chemistry at Cardiff University, has resulted in the creation of an innovative software package called Molpro. Molpro provides the ability to calculate from first principles (ab initio) the properties of molecular matter. It is unique and differs from other quantum chemistry packages because, using local electron correlation methods, it significantly reduces the increase of the computational cost with molecular size. This means highly accurate computations can be performed for much larger molecules than with most other programs, and the screening of far wider libraries of potential new materials is enabled. Consequently, Molpro is extremely valuable to the global chemical and pharmaceutical industries and has been endorsed and applied by major international corporations that manufacture products that are used by a wide range of industries (including cosmetics, automotive and construction). Examples are BASF, Mitsubishi Chemical Group, Sasol and Nissan Chemical Industries.
The software is distributed under licence through Cardiff University and resellers, operating in China, Japan, Brazil, Taiwan, Russia, Poland and the USA. During the REF period, it has generated over £1.75M in revenue, and is used by over 650 organisations worldwide. Accordingly the impact claimed is extensive economic gain and impact on practitioners and professional services.
A new family of antiviral agents, bicyclic nucleoside analogues (BCNAs), discovered in Cardiff University has led to a highly potent anti-VZV (shingles) molecule, FV-100. On a worldwide basis more than two million patients are affected by shingles annually. FV-100 has successfully completed Phase II clinical trials, showing it is safe, potent and effective and with clinical advantages over the current standard of care. FV-100 has received more than $30 million in R&D investment, generating patents and creating highly skilled jobs in the UK and the USA, with the parent company currently valued at $397 million. It will enter registration trials in late 2013.
Research and Development activity at Cardiff University's Astronomy Instrumentation Group (AIG) has been commercialised and made available to the international market. Sales have been made to fields including bio-molecular spectroscopy for health science, plasma fusion diagnostics for sustainable energy, and remote atmospheric sensing. This has resulted in economic impact through:
Wilkinson has developed, evaluated and applied techniques, standards and datasets for facial depiction and identification of the dead. The impacts include:
Femtocells provide short-range (e.g. 10m) wireless coverage which enables a conventional cellular communication system to be accessed indoors. Their widespread and growing use has been aided by the work in UoA11 by the University of Bedfordshire (UoB).
In 2008, while the femtocell concept was still in its infancy, researchers at UoB with expertise in wireless networks recognised that coverage prediction and interference reduction techniques would be essential if the benefits of that concept were to be realised.
Collaboration with two industrial partners (an international organisation and a regional SME) resulted in tools that enable operators to simulate typical femtocell deployment scenarios, such as urban, dense apartments, terraced house and small offices, before femtocells can be reliably deployed by users without affecting the rest of the network (a benefit of the technology). These tools have been deployed by those partners to support their businesses. A widely-cited textbook, written for network engineers, researchers and final year students, has brought knowledge of femtocell operation to a wider audience.
The University of Brighton's (UoB) research has reduced information misuse and decreased the threat of data and identity theft in Nokia Location and Commerce (L&C). Further impact has been to lower the risk of corporate liability and consumers' personal loss. UoB's innovative research in the creation of concept diagrams now underpins and provides rigour to Nokia L&C's privacy engineering processes. Consequently, they can now communicate complex information across diverse teams in an intuitive and accessible manner. Ultimately, the impact is on all customers and users of Nokia's L&C's services worldwide.
Economic impact is claimed through the growth of the biopharmaceutical spin-out company Q Chip Ltd. During the REF period, this has created 19 new jobs, £7.5M investment, a new Dutch subsidiary (Q Chip BV), and staged-payment, six figure contract sales to four major international pharmaceutical companies.
Q Chip has generated over £928K in contract sales from the pharmaceutical industry from 2008-2012, with further sales of over £1M projected in 2013-14.
Originally established by Professor David Barrow in 2003 from his micro technology research, Q Chip has developed new processes and miniaturised equipment to encapsulate materials, including drugs, within uniform polymeric microspheres as injectable therapeutics.