Log in
Edinburgh Designs Ltd., (EDL) was spun-out to exploit ERPE research from the original Wave Power Group. With six staff and an annual turnover approaching £2M EDL has supplied the equipment and control systems for wave tanks in 19 countries including the world's largest computer-controlled wave test facility, the US Navy Manoeuvring and Station Keeping Tank. They are currently completing the world's first circular tank, combining waves with currents in any relative direction, which is operated by the 6 person company, "FloWave" EDL, still run by the founding staff, it is the world-leading supplier of wave-making technology for scientific and recreational facilities.
Wave power research at Queen's has led directly to the development of two types of convertor by Aquamarine Power Ltd (Edinburgh) and Voith Hydro Wavegen (Inverness). Direct employment totalling 400 person years has resulted along with hundreds of people in other companies delivering the different phases of the prototype machines. Financed by over £60 million from both the public but mainly the private sectors, this represents 20% of the total investment in wave power worldwide during this period. Internationally recognised success in wave power has led to the establishment of the Queen's team in tidal stream energy and environmental monitoring of marine renewable systems.
The impact arises from the study of extreme ocean waves and their interaction with marine structures. It is relevant to the offshore, shipping, coastal and marine renewables industries and has been both economic and regulatory, involving:
(a) The establishment of revised guidelines for the design of new structures / vessels.
(b) Enhancing best practice, both from an economic and a safety perspective.
(c) Reducing the uncertainty in critical design issues, thereby improving overall reliability.
(d) Enabling "end-of-life" extensions for existing structures.
(e) Facilitating the effective decommissioning of redundant structures.
(f) Contributing to the development of new industrial R&D equipment, thereby assisting specialist UK manufacturers to secure international orders.
Guidelines and standards underpinned by Strathclyde research have improved the design, assessment and the safety of marine structures subjected to wave impact in large steep waves. The guidelines and standards are widely used in the design of floating structures, particularly Floating Production, Storage and Offloading vessels (FPSOs) and offshore wind turbines. Since January 2008 the work has impacted the design, strength assessment and failure analysis of fixed offshore oil and gas platforms, renewable energy devices and ships. The guidelines and standards are used by designers to mitigate against damage caused by breaking wave impact, thereby improving the safety of mariners and offshore workers, reducing lost production due to downtime, and cutting the risk of environmental impact due to oil pollution. The research has also been used by Strathclyde researchers in industry-focussed studies, in legal work related to the loss of the oil tanker Prestige (2009-2013), in the assessment of the Schiehallion FPSO for BP (2010), and design of a Scottish harbour wave screen (2009) that allows ferries to access and stay in the harbour in more severe weather.
Extraction of energy from ocean waves is a high-priority sustainable-energy initiative in the UK. The OWEL wave-energy convertor involves a floating rectangular box which captures waves and extracts their energy. This configuration dovetails with research at the University of Surrey on fluid sloshing in rotating-translating rectangular containers.
The Surrey team is providing underpinning mathematics for the modelling and has led to the development of a suite of algorithms that are being tailored for use to optimise system parameters. The outcome is direct impact on the wave energy industry and indirect impact on the environment and the economy.
The impact is in the ERPE design of protocols which are subsequently used for evaluation and comparison of the performance of tidal energy converter designs. Researchers within the UK Centre for Marine Energy Research (UKCMER) at ERPE have led much of the fundamental and applied research that has supported the commercialisation of tidal energy technologies through the establishment of new international test standards and protocols.
ERPE researchers have regularly provided evidence which has influenced policy change in marine energy development in the UK and internationally with many ERPE graduating PhD's, subsequently employed in the marine energy sector.
Mathematical models of violent flows developed by Dr Mark Cooker at UEA have been adopted by industry. The work enhances the capabilities of coastal engineers to design and repair seawalls and coastal structures, and enhances their interpretation of damage inflicted by storm waves. The research has direct industrial application, and is used to contain, interpret and lessen sea-wave damage to structures. Commercial software has proved inadequate in this field, compared with Cooker's mathematical modelling, because computations alone cannot resolve the brief time- scales and short length-scales over which there are large changes in pressure, and sudden excursions of the liquid as splashes. An example of this impact is the design of an observation gantry exposed to storm waves.
Research by Professor John Thuburn and his group at the University of Exeter has made several key contributions to the formulation and development of ENDGame, the new dynamical core of the Met Office weather and climate prediction model. ENDGame has been shown to deliver improved accuracy and better computational performance at high processor counts compared to the current operational dynamical core, directly impacting the technological tools available to the Met Office. These improvements will benefit users when ENDGame becomes operational in early 2014: the economic value to the UK of the weather forecasts produced by the Met Office has been estimated to be in excess of £600M pa, while climate change projections inform policy decisions on mitigation and adaptation with huge economic implications.
A step change reduction in tidal energy costs has been achieved through the development of the novel Contra Rotating Marine Turbine `CoRMaT' tidal energy technology. The internationally patent-protected CoRMaT system reduces capital, operational and maintenance costs while increasing the extractable tidal energy resource by harnessing flows in deeper waters and from less energetic sites, which were previously considered to be uneconomic. A University spin-out company, Nautricity Ltd, was formed in 2010 to commercialise this technology. The development of this technology has changed both Scottish and UK Government policy via their introduction of programmes which demonstrate a step change reduction in the costs of marine renewables.
Our research has been key to the development of investor confidence in an emerging UK tidal stream industry. We have contributed to the development and validation of commercial and open- source software for tidal stream system design and our expertise has been instrumental to the successful delivery of major objectives of two national industry-academia marine energy projects commissioned by the Energy Technologies Institute (ETI). Taken together, these outcomes have reduced engineering risks that had been of concern to potential investors. Investor confidence in tidal energy has been increased, as highlighted by Alstom's £65m acquisition of a turbine developer following a key outcome of the ETI ReDAPT project.