Log in
Decreased crop yields caused by the evolution of herbicide-resistant weeds are a global threat to agriculture and food security. Evolution of weed resistance to the herbicide glyphosate is particularly prevalent in North and South America, where genetically modified glyphosate-resistant crops are widely grown. Research carried out at the University of Warwick between 2008 and 2013 and led by Dr Paul Neve, in collaboration with industry and academia, has resulted in the development of computer models to simulate the evolution of glyphosate resistance in weeds. This modelling research identified new, more sustainable farming strategies for the use of this technology, such as avoidance of sole reliance on glyphosate and more effective ways to manage the timing of herbicide application. These recommendations have been disseminated widely throughout North America by the attendance of Neve and project collaborators at grower conferences, workshops and road shows, and have also attracted associated press coverage. The research has fundamentally changed farmer and industry management of genetically modified herbicide-resistant crops by providing new plant growth guidelines that are being used to combat herbicide-resistant weeds; for example, providing the cotton growth guidelines used for 75% of this crop in the mid-southern USA.
Weak acids (e.g. sorbic acid) are used by food manufacturers to prevent fungal contamination of food and beverages. Professor Archer in the Molecular Microbiology group determined the fungal species that cause such contamination, and identified fungal genes and enzymes that confer resistance to sorbic acid during initial outgrowth of fungal spores. They characterised the biochemistry of the resistance mechanism, enabling design of improved mould inhibitors. These inhibitors, used at the correct time, have improved manufacturing processes to prevent mould contamination and product wastage. Knowledge of mould genetics has also been applied to other industries to improve food additive and biofuel manufacturing processes.
Antibiotic resistance has become one of the great challenges to human health in the 21st century with increasing numbers of isolates of many pathogenic bacteria being resistant to front line, therapeutic antibiotics. Recent evidence has suggested that antibiotic resistance can be selected by exposure to biocides, which are commonly used as disinfectants and preservatives.
Research at the University of Birmingham has shown the common mechanistic links between antibiotic and triclosan (a commonly used biocide) resistance. This research was used by the European Commission as evidence to support two reports published in 2009 and 2010 to inform opinions as to the safety of biocide use. These reports recommended specific new research avenues be funded and that possible selection of antibiotic resistance by biocides is a valid concern and were used as part of the evidence base in preparation of a new law which has come in to force across the European Union.
Biocide use and sales in Europe have been controlled by the Biocidal Products Directive since 1998. This legislation has been superseded by the EU Biocides Regulation (published May 2012, legally binding from September 2013). This new legislation now includes a requirement for new biocides to be demonstrated not to select resistance to themselves or antibiotics in target organisms before achieving registration; this addition was informed by University of Birmingham research. This will prevent biocides entering the environment that exert a selective pressure and favour the emergence of mutant bacteria with increased biocide and antibiotic resistance. Thus the research described has had an impact on policy debate and the introduction of new legislation.
Research using novel techniques of genetic marker-aided selection enabled the development of new high yield, disease- and drought-resistant pearl millet hybrids, of which HHB67-Improved was released throughout India. HHB67-Improved is the first product of marker-assisted breeding to reach cereal producers in India and has spread rapidly since its release, preventing yield losses to downy mildew of up to 30% (valued at £7.8M) per year, and providing £2.6M additional annual grain yield. By 2011, it was grown on over 700,000 ha and currently three million people have improved food security as a direct result of this international development focused work.
Impact: Economic: The first fungicide-based control schemes minimising UK barley yield losses (saving approx. 516K tonnes / £95.1M per annum). A risk assessment method, which minimised pesticide usage.
Significance: Barley is the second most popular cereal crop grown in the UK — in 2012, 5.52 million tonnes of barley were grown (market value £1.02 billion). The research led to savings to the UK farming industry of ~£5.4 million per annum
Beneficiaries: Farmers, malting and brewing industries, UK tax revenue.
Attribution: Drs. Oxley, Havis, Hughes, Fountaine, and Burnett (SRUC) identified the pathogen and produced a field test for early identification of infestation.
Reach: Barley growing, malting and brewing sectors, seed and agrochemical industries UK-wide and in Ireland.
Malaria kills around 650,000 children a year but can be prevented by killing the mosquito vectors. As mosquitoes become resistant to insecticides the prevention measures can become ineffective. Research at the Liverpool School of Tropical Medicine (LSTM) led by Professor Hemingway FRS has been instrumental in the development of current World Health Organisation (WHO) guidelines to manage resistance, and has led to improved resistance diagnostics and novel monitoring software to integrate entomological and human health outcomes. LSTM's research led to the creation of the Innovative Vector Control Consortium (IVCC) which was established as an independent Product Development Partnership (PDP) in 2008. New, longer lasting formulations of insecticides developed by IVCC are now in operational use, and several novel public health insecticides are under development.
Multidisciplinary research at LSHTM has increased understanding of how antimalarial drug resistance emerges and spreads, resulting in impacts on national, regional and international policy-makers and donors, and especially benefiting malaria patients and communities in Southeast Asia. The research influenced (1) WHO recommendations on using sulphadoxine-pyrimethamine for intermittent preventive treatment in Africa and (2) policy responses to the threat of artemisinin resistance including the WHO `Global Plan for Artemisinin Resistance Containment' (2011) and the Thai-Cambodia Artemisinin Resistance Containment programme (2009-2011). These efforts were associated with decreased malaria cases, and reduction in availability of artemisinin monotherapies in Cambodia.
Research by Professor Laura Piddock at the University of Birmingham has shown that the use of fluoroquinolone antibiotics in veterinary medicine can select for antibiotic resistance in certain strains of bacteria which then present a potential risk to human health. Fluoroquinolone antibiotics are widely used in human medicine to treat bacterial infections. For those patients with chronic bacterial gastroenteritis and/or an invasive infection, fluoroquinolone antibiotics are the empiric treatment of choice by GPs; resistance to these agents represents a large public health risk. The outcomes of the research have been used by policy makers to define the human risks of food borne infection from antibiotic resistant strains and have led to the review and amendment of international policy on the use of antibiotics in food producing animals, in particular the World Health Organisation (published outside of the review period) and US Food and Drug Administration (FDA). The research described has had a direct impact on international policy and the ban on the use of certain antibiotics has had an impact on the levels of fluoroquinolone resistance in bacteria isolated from food producing animals, reducing the transmission of resistant strains to humans.
Our research has led to increased crop yields and a reduction in the need for synthetic pesticides, through a new patented technology of treating seed with the natural plant signalling molecule, jasmonic acid. Lancaster's fundamental research in to the biology of plant-herbivore interactions showed for the first time that jasmonic acid (JA) seed treatment of a range of crops improved pest resistance for many weeks after germination, without the physiological costs of foliar JA application. We have patented this JA seed treatment technology (patents awarded in USA, Canada, Japan, Europe, Australia, New Zealand, and Mexico, applied for in three other major countries) and licensed it to BASF (previously Becker Underwood). JA seed treatments have been available to growers in the USA since 2010, and the technology is being rolled-out internationally for a range of major global crops.
Cardiff Researchers in 2009 discovered the new antibiotic resistance determinant NDM-1 and in 2010/11 characterised its rapid worldwide spread through Gram-negative bacteria (e.g. Escherichia coli and Vibrio cholerae). NDM-1 redefined how antibiotic resistance can spread locally and internationally and create new extensively-drug resistance (XDR) that severely limits therapeutic options. This discovery has resulted in: 1) new policies for the admission of overseas patients to hospitals in the UK, France, USA, Australia and China, 2) linkage between MDR transmission and poor sewerage treatment, 3) potable water treatment in Southern Asia 4) positioning papers for the World Health Assembly and 5) policy-changes by the World Health Organisation.