Log in
Imperial researchers in Prof Paul French's photonics group demonstrated one of the first practical FLIM instruments in 1997 using a prototype gated optical intensifier (GOI) developed by Kentech Instruments Ltd and a home-built solid-state ultrafast laser. They subsequently pioneered the use of ultrafast supercontinuum sources (USS) for FLIM. Today wide-field time-gated FLIM is a commercial success and is being widely applied for biomedicine, including for imaging of diseased tissue [e.g. 5] and for FRET (Fluorescence resonance energy transfer) microscopy to assay protein interactions [e.g. 3, 4]. This research thus helped translate FLIM to a wider community, highlighting the potential for tissue imaging, cell biology and drug discovery. It stimulated about £5M of GOI sales for Kentech [section 5, source A], with whom they developed time-gated FLIM technology and applications, and millions of pounds worth of sales of supercontinuum sources for Fianium Ltd [B].
Following the 2005 inauguration of the joint Non-Destructive Testing Validation Centre with TWI Ltd at Port Talbot, UWTSD: Swansea Metropolitan established a Knowledge Transfer Centre (KTC) in 2008 with European Regional Development Funds (ERDF) and UWTSD funding. The role of the KTC is to support Welsh Manufacturing Industry in the conjunction of NDT with Composites Fabrication. With additional funding from the pan-Wales ASTUTE project, two Prince of Wales Innovation Scholarships, two EPSRC/Industry CASE studentships, one in NDT and the other in Composites, the Unit has assisted 46 companies across Wales, undertaken 32 collaborative industrial projects and has created 5 jobs. Investment induced has totalled £282,482 to date and the Unit has established itself as a leading NDT centre of expertise. Industrial engagement includes research and development with leading NDT companies such as TWI Ltd, Silverwing Ltd, Oceaneering Ltd, and manufacturing companies such as Calsonic Kansei Ltd, Tata Steel and United Aerospace Ltd.
Molecular dynamics (MD) simulations are used extensively in chemistry, biology and material sciences, placing huge demands on computer resources. Because these simulations explore the behaviour of molecules at defined ambient temperature, temperature control (thermostatting) is an essential element of MD algorithms. In a series of papers published from 2009 on, Leimkuhler (Maxwell Institute) and his collaborators developed improved numerical methods for temperature control. They proposed new algorithms and analysed their properties (such as fidelity to the dynamical model, efficiency and stability). The new algorithms have since been implemented in the world's leading MD software packages including DL-Poly, AMBER, NAMD and Accelrys's Material Studio. The research has had clear economic impact on the commercial company Accelrys by improving its product, and more broadly on the community of MD code users worldwide by providing improved simulation tools.
Professor Alexander's work on diffusion magnetic resonance imaging (MRI) modelling and processing has had significant and lasting impact on medical practice. In particular, neurosurgical support systems rely on his work to map the major connection pathways in the brain, helping the surgeons avoid damaging them during intervention. Specific examples are in epilepsy, where, since 2010, surgeons perform about one operation per week using these systems, and brain tumour resection, where surgeons in Milan have since early 2013 been using a similar system based on UCL's latest microstructure imaging techniques. The key impact is on patients, whose likelihood of permanent post-operative deficits in, for example, visual, verbal or motor skills, is significantly reduced.
Research in solid state lasers and non-linear optics in the Department of Physics has led to the creation of innovative laser companies in Glasgow serving global scientific and industrial markets. World-leading products have opened up applications in biomedical imaging, security, defence, pollution monitoring, material processing and fundamental spectroscopy. The companies Coherent Scotland Ltd and M Squared Lasers Ltd can trace a direct link to the research in the Department of Physics and are the central theme of this case study. Since 2008, these two companies have created an estimated 600 person years of employment and £135M of sales from products underpinned by research undertaken at Strathclyde. The wider cluster of companies, researching, designing and developing laser products, including Thales Optronics and more recently the Fraunhofer Centre for Applied Photonics, which has a close working relationship with the University, has made Glasgow one of the leading European centres for innovative laser manufacture.
Research at the University of Cambridge Department of Engineering (DoEng) has enabled accurate positioning to be added to 2D freehand ultrasound probes to enable the acquisition of large coherent blocks of high-resolution 3D ultrasound image data. The software code base developed in the DoEng was licensed to two separate companies, Schallware and MedaPhor, to enable them each to develop an ultrasound training product. Both companies have sold to more than 30 customers worldwide during the REF impact period; the Cambridge software had a key role in contributing to the innovation and quality of the products developed by both companies, and significantly increased the speed at which they were able to bring these products to market.
Imaging speed is of critical importance in most Magnetic Resonance (MR) imaging applications. King's College London (KCL) researchers have developed spatiotemporal undersamplings, or "k-t" methods, for three-dimensional (3D) imaging and corresponding image reconstruction methods that have increased the speed of imaging significantly, so that particular scans are now 5-7 fold faster. This has directly impacted the experience of the patient whose overall examination time has been reduced from more than 1 hour to less than 30 minutes depending on the application. The technology has been patented and has been implemented by Philips Healthcare, one of the three major manufacturers of MR equipment. A clinical solution platform for 3D MR cardiac perfusion and quantitative flow imaging, based on the technology developed at KCL, has also been launched by the Swiss company, GyroTools LLC.
Pioneering research at Essex developed an innovative mathematical method for determining the chlorophyll fluorescence parameter Fo', as well as novel LED lighting technology and a multi-plant imaging system. This instrument is marketed by Technologica. Originally an Essex spinout, the company has sold 42 units across Europe, Asia and South America since 2006, recording its highest ever profits over the past three years (totalling ~£115k). Essex's mathematical method for determining Fo' is also used by other manufacturers, who have since developed their own imaging systems. This research has helped to establish chlorophyll fluorescence imaging as a mainstream screening tool, now used globally to inform a range of crop production and handling strategies.
Fluorescence lifetime research since 1993 in Strathclyde's Photophysics Group led by Prof. David Birch contributed to the success of the University spin-out company IBH (Imhof, Birch, Hallam), and its successful merger with the £1Bn multinational company Horiba. The Strathclyde research has helped Horiba to be, since 2008, the market-leading supplier of fluorescence spectrometers, which comprise steady-state, lifetime and hybrid instruments. The commercial success of the company has led to economic benefits and employment. Through production of an improved spectrometry product range, the Strathclyde research has also facilitated multidisciplinary molecular and materials research globally, across Industry, Government and University sectors, bringing benefits to diverse disciplines such as life sciences, healthcare, chemistry, and nanotechnology.
Development of the World's first radiation-tolerant, wafer-scale (13 cm square) CMOS imager (Active Pixel Sensor) which presents exciting new potential for medical, scientific and technological imaging with much improved performance and lower life-time costs. This development fully met a Grand Challenge set by EPSRC and the imager, called Dynamite, is being exploited in on-going trials for prostate cancer radiotherapy at the Royal Marsden Hospital/ICR and for diffraction-enhanced mammography at UCL/Ninewells Hospital, Dundee, and proton therapy imaging with Wellcome Trust support. Dynamite won the IET Innovation Award for Electronics (2012). A spinout company, ISDI Ltd, was formed in 2010 to further custom CMOS imager design and provision. [text removed for publication]
This case study demonstrates both major societal (healthcare) and economic impact through making commercially available new and revolutionary medical diagnostic and therapeutic imaging technology, being delivered directly a new start-up company. It also exemplifiers the entire entrepreneurial pipeline from RC-UK Basic Technology funding to successful company creation.