Similar case studies

REF impact found 36 Case Studies

Currently displayed text from case study:

Development of the world's best-selling Raman Microscopes for Renishaw plc

Summary of the impact

Professor Batchelder at Leeds undertook key aspects in the research, design, development and application of Raman microscopes. His partnership with Renishaw plc (Spectroscopy division) led to the development of a new generation of imaging Raman microscope, with performance improved by an order of magnitude. This instrument not only offers dramatically faster performance, meaning spectra could be acquired in seconds rather than tens of minutes, but requires much less laboratory space and maintenance, and offers a wider range of performance compared to other systems on the market. Consequently, the Renishaw system has been the world's best-selling research Raman microscope 2008-13. Wide impact has been generated from the economic benefits of the emergence of the Raman microscope products, from their application within the customer base in terms of improved imaging performance and from the fact that these instruments have since found new applications in a wide range of fields from space research to Forensic Science (see section 4), effectively expanding the customer base.

Submitting Institution

University of Leeds

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

From the lab to wind turbines and beyond… the global commercial impact of Aston’s fibre Bragg grating research

Summary of the impact

Aston's fibre Bragg grating research on optical sensing has had a global commercial impact, in particular the development of low-cost fibre FBG sensor interrogation methods. The work has been carried out with a diverse range of companies (including BAE Systems, Airbus, Insensys, Schlumberger) working across different sectors including oil and gas aerospace and marine. Specific impacts include the acquisition of 70% of the stock of Insensys Wind for US$15.7 million by Moog in 2009 and continuing employment by Smart Fibres, Moog Insensys and Astasense.

Submitting Institution

Aston University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering, Materials Engineering
Technology: Communications Technologies

The world’s first terabit transcontinental optical communications system exploiting dispersion managed solitons

Summary of the impact

The world's longest high capacity terrestrial commercial communications system, now deployed worldwide, was developed from Aston University's pioneering research on the concept of dispersion managed solitons. The concepts and expertise from this research were used to develop and implement the associated system design for high capacity (1Tb/s) WDM (wavelength division multiplexing) transmission over 1000s of kilometres. Commercial development was led by Prof Doran and the core team from Aston who left the University to found Marconi-Solstis, a part of Marconi plc. Prof Doran and other key members of this team have since returned to Aston The system, now owned by Ericsson, (but still called Marconi MHL3000) has current annual sales of order $100M, and employs hundreds of people worldwide.

Submitting Institution

Aston University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Technology: Communications Technologies

User-trainable visual anomaly detection for quality inspection tasks in the food industry

Summary of the impact

A new multi-purpose computer vision system to identify sub-standard food products has been created. The research developed a user-trainable software technology with a range of possible applications, thus overcoming the specificity and other limitations such as the high set-up cost of existing visual inspection systems. This research is achieving impact in several areas within the food industry, including quality analysis of fresh produce, food processing and food packaging. The technology is currently being trialled at the leading post-harvest applied research facility for agricultural storage in the UK, and is also being licensed to a world-leading supplier of food packaging machines and equipment for inclusion in a new product range under development. The longer-term impacts include safer food, reduced food waste, more efficient food production, and better use of natural resources (e.g. reduced use of water, pesticides and other inputs), through early detection of potentially harmful flaws in production and packaging.

Submitting Institution

University of Lincoln

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing

Three spin-out companies built on platform Lab-on-a-chip technologies deliver diagnostic tools for infection and disease

Summary of the impact

Fifteen years of research in advanced Lab-on-a-Chip technologies at the University of Glasgow has led to three spin-out companies: Mode-Dx, Clyde Biosciences and SAW-Dx. Since 2008 these companies have developed a range of products and services for the diagnostic screening of chronic diseases, for the detection of acute infections and for improving the drug discovery process. The three companies have secured a total of £2.3M in venture funding and secured key strategic collaborations with stakeholders including industry partners and the NHS.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Analytical Chemistry

Commercialisation of analytical technologies: rapid and specific quantification of airborne actives in the manufacturing environment

Summary of the impact

Analytical methods and nanotechnology developed and patented since 1994 by the University of Sunderland, for healthcare, forensic and environmental monitoring applications have been exploited for their commercial and healthcare benefits. The patents were out-licensed to a University spin-out company for the production of a `sniffer' device to detect raw material air contamination in a manufacturing environment. The proof of concept project resulted in significant commercial benefits, such as inward investment, new industry, specialist training, and >20 new jobs for a range of skilled workers, both in the UK and overseas, development of health and welfare protection, exploitation of technology to meet new industry regulations, and improved efficiency in the manufacture of active pharmaceutical ingredients and products for household goods.

Submitting Institution

University of Sunderland

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Organic Chemistry
Engineering: Environmental Engineering

Human safety and economic benefits from commercialisation of a unique gas detection product

Summary of the impact

New commercial gas sensing technology developed from research at the University of Strathclyde brings extensive technical, operational, safety and cost benefits to applications such as mine safety and leak detection in methane production, storage, piping and transport systems. World-wide commercial sales (in Japan, China and the USA) began in late 2010 through a spin out company, OptoSci Ltd. Sales are growing and have amounted to a total of £250k since launch plus a customisation contract for £193k, leading to jobs sustainability and growth. In addition to economic impacts, the technology also brings health and safety benefits in the gas distribution and mining industries through human safety assurance in the event of gas leaks / build up.

Submitting Institution

University of Strathclyde

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies
Medical and Health Sciences: Neurosciences

From space science to medicine; the application of novel sensor technologies in healthcare

Summary of the impact

Space science and medicine share a fundamental requirement for radiation sensors of the highest possible sensitivity. The development of imaging detectors for major X-ray observatories such as the European XMM-Newton and NASA's Chandra provided the impetus for a broad-based, intensive programme of deliberate technology transfer from the Unit's Space Research Centre (SRC) into the life sciences and medicine. The resulting impact now extends far beyond the exploratory provision of prototype sensor technologies for biomedical researchers into the full-scale commercial exploitation of those technologies with industry partners in the UK and Europe and, in three separate cases, to early-stage patient trials. Impact is being delivered in clinical specialisms from oncology to ophthalmology; from neurotoxicology to emergency medicine. The impact delivery mechanisms — the hospital-based Diagnostics Development Unit (DDU) and the campus-based Bioimaging Unit — are themselves novel and have achieved national prominence as examples of best practice in the drive for economic return even from established blue skies research.

Submitting Institution

University of Leicester

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences

Designing new nonwoven fabrics: The creation of NIRI Ltd and the commercialisation of products for the industrial, healthcare and consumer sectors.

Summary of the impact

Professor Stephen Russell's fundamental and applied research on the formation, structure and properties of nonwoven fabrics has directly led to the creation and continued success of the Nonwovens Innovation and Research Institute (NIRI) Ltd a University of Leeds spin-out company. Formed in 2005 to exploit Russell's research, NIRI has grown annual sales revenue to ~£1 million supplying products and services that have enabled many medium-sized enterprises (SMEs) and global public limited companies (PLCs) to launch improved or new products, growing their market share and positively impacting consumers. Additionally, the research has enabled NIRI to independently establish and co-fund new commercial joint ventures that have resulted in the development of new IP (intellectual property)-protected products for improving global health and security. NIRI has grown its workforce to twenty (mainly University graduates) and has been profitable from the first year of trading.

Submitting Institution

University of Leeds

Unit of Assessment

Art and Design: History, Practice and Theory

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Biomedical Engineering, Manufacturing Engineering

Novel Quantum Cascade Laser technology leads to new products, processes and market opportunities

Summary of the impact

The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Other Physical Sciences

Filter Impact Case Studies

Download Impact Case Studies