Log in
There have been both direct and indirect contributions to cost savings, reduced fuel consumption and reduced CO2emissions through Sussex research into gas turbine engine technology. Rolls-Royce and GE Aviation have benefited from experimental measurements that have allowed improvements to internal air systems flow modelling. This has led to savings in engine testing of approximately £10M over the period; indirectly it has also led to substantial economic benefits through reduced costs for engine manufacturers and their airline clients, and to improved design of internal cooling and sealing systems, which has direct impact on reduced fuel consumption and emissions.
Research in the University of Cambridge Department of Engineering (DoEng), which made it possible for the first time to design a 3D compressor blade as a single component, underpinned the design of compressors in Rolls-Royce civil aero engines. Blades designed using the research results yielded fuel efficiency improvements of 0.8% when deployed in Rolls-Royce Trent engines. The efficiency improvements in engines in service are estimated to have delivered savings of 460k tonnes in CO2 emissions and USD 145 million in fuel costs during the assessment period. Rolls- Royce's outstanding order book for engines in which the technology made a significant contribution to efficiency is estimated to be worth GBP 27 billion at list prices as at 31 July 2013; orders received during the assessment period are estimated to be worth GBP 18 billion at list prices.
A unified design methodology for tuning gas turbine engine controllers, developed by researchers in the Department of Automatic Control and Systems Engineering (ACSE), is being used by Rolls- Royce across its latest fleet of Civil Aero Trent engines. Trent engines are used to power, for example, Boeing 787 Dreamliner and Airbus A350 aircraft that have been adopted by the world's leading airlines.
This new methodology has made economic impact through the introduction of a new process for tuning gas turbine engine controllers leading to the adoption of a significantly changed technology. Indicators of impact are:
i) a new control law and design practice, resulting in a unified approach for different projects;
ii) reduced development effort by shortening and simplifying the design exercise and rendering it suitable for modular insertion; and
iii) streamlined verification requirements.
Rolls-Royce uses the HYDRA computational fluid dynamics (CFD) code for the design of all of its new gas turbine engines. The HYDRA CFD package, including the mathematical theory behind it, was developed by Professor Mike Giles and his research team in the period 1998-2004 at the University of Oxford, and subsequently transferred to Rolls-Royce, forming the basis of the RR corporate CFD strategy with an investment of over 100 person years in development.
Since 2009, HYDRA has become the standard aerodynamic design tool across Rolls-Royce, and has been used to design Rolls-Royce's Trent 1000 engine and the newer Trent XWB. HYDRA has enabled Rolls-Royce to save over [text removed for publication] in test rig expenses, provides superior accuracy compared to its competitors such as FLUENT, and has contributed to increases in engine efficiency of up to [text removed for publication], which in turn has led to higher sales and increased revenue for Rolls-Royce.
This impact is the improvement of aircraft engine efficiency by the application of profiled endwalls to turbine blades. The technology was researched by Durham University and exploited by Rolls-Royce by deploying the technology on airframes. Engines with profiled endwalls include the Trent 900 (A380 airframe), Trent 1000 (787 Airframe) and Trent XWB (A350 airframe). This (as of April 2013) totals around 2000 aircraft engine orders with profiled endwall technology applied. A saving of 1750 litres of fuel per flight from Zurich to Singapore was estimated when profiled endwalls are applied. This gives a 4400 kg reduction in carbon dioxide emissions for such a journey with a fuel cost saving of over $1100. In addition to the environmental benefit and the obvious cash savings for airlines an economic benefit for UK industry has arisen as Rolls-Royce is able to sell engines with a reduced fuel burn as well.
Research in the University of Cambridge Department of Engineering (DoEng) between 2003 and 2010 investigated the technical feasibility and efficiency benefits of an innovative design for the S-shaped ducts linking the two compressors in a modern civil aero engine. Rolls-Royce incorporated this technology in its latest generation of engines (Trent XWB); the benefits in terms of increased fuel efficiency which the new design of S-duct brings are a significant selling-point for what is marketed as "the world's most efficient engine". As at 31 July 2013 Rolls-Royce has an order book of more than 1400 such engines (worth, at list price, approximately GBP 20 billion), of which 832 orders were received within the assessment period.
Research into vibration damping has had a major economic and operational impact on Rolls- Royce resulting in a new design for [text removed for publication] engines used on [text removed for publication] wide body airliners. This has saved [text removed for publication] engine refit costs. The team has also designed a particle damper to reduce vibrations and significantly increase the life of the fuel system [text removed for publication].
University of Huddersfield research into the optimal design of flow-handling systems has been credited with "transforming" the development strategies and global market sales of an industrial partner. Weir Valves and Control Ltd has enjoyed a 75% saving in design lead time and a 1,800% increase in annual sales - from several thousand before its collaboration to millions in 2013 - through the structured integration of researchers' computational fluid dynamics expertise in its design process. The success of this collaboration, which has been described as an exemplar of a Knowledge Transfer Partnership, has also led to further research contracts.
Research carried out at the University of Southampton has enabled major players in the aerospace industry — among them Rolls-Royce, Airbus, and Boeing — to produce more fuel efficient, longer lasting engines and aircraft at reduced cost. The research has provided the aerospace industry with modelling tools and software enabling companies to explore complex new designs quickly whilst managing product risk in a competitive market. The research team has also developed new design processes for unmanned aircraft, which — as a result of strong media interest - improved public understanding of such new technologies through worldwide coverage. A spin-out company has achieved strong technological and economic impacts in its own right.
Research from the Sheffield Department of Mechanical Engineering has led to major improvements in engineering analysis and design software for aerospace companies such as Rolls-Royce and Airbus. As a result of introducing new practices based on our research, the organisations have reported significantly reduced time input to design components as well as related economic benefits. For example: Rolls-Royce has reported an order of magnitude improvement in the time needed to mesh components. Similarly, by adopting our highly efficient computational aerodynamics solvers, Defence Science & Technology Laboratory has reduced the time its engineers spent evaluating concepts from many days to a few hours.