Log in
Current Defra policy on river catchment management has been informed by our interdisciplinary research over a 10-year period, much of it addressing the challenges posed by the EU Water Framework Directive. Outcomes from our research are reflected in the policies proposed in the 2011 Water for Life White Paper and also in the multi-million pound investment plans of water companies. We have also influenced a whole-community framework for catchment management in the UK that was piloted in 2011 and has now been extended to 100 catchments across England.
Newcastle's research has shaped national policy and practice on the management of flooding and agricultural pollution, and international policy and practice in the developing world on managing forested catchments and sustainable water resources management. We show evidence that our research has:
Impact of peat research at NTU comprises:
Research on peatland hydrology and erosion has been used by stakeholders including Defra, International Union for the Conservation of Nature (IUCN), Natural England, Scottish Natural Heritage, Moors for the Future, RSPB, water companies, horticultural peat producers and Environment Agency to improve policy and practice in the management of peatland habitats. Research into alternative growing media for use in horticulture, pioneered by Carlile in conjunction with William Sinclair Horticulture, contributed to development of market-leading brand New Horizon.
Exeter Engineering's Centre for Water Systems (CWS) undertakes internationally leading fundamental and applied research in the $500bn global water sector. EPSRC-funded research has underpinned impacts with both reach and significance in the areas of practitioner and professional services and economic impact. CWS staff have co-authored authoritative best practice guides with highly respected practitioner publishers: the Construction Industry Research and Information Association (CIRIA), the Building Research Establishment (BRE) and Spon Press. These have been widely used in the water sector, and construction and built environment sector. CWS software and knowhow have been used extensively by water service providers (such as Scottish Water) and their consultants (including SEAMS, originally an Exeter spinout) to enhance business performance by identifying efficiencies, saving costs and improving operation. Optimisation software has been made freely available and has hundreds of users worldwide including consultants and financial organisations.
Surface water runoff in urban areas makes a significant contribution to pollution of lakes and rivers, but historically is poorly addressed in catchment models. The School of Geography (SoG) developed a Geographic Information System (GIS) model and supporting database to quantify urban source area loadings of 18 common and priority pollutants. This knowledge improves catchment models and supports impact assessment and mitigation planning by environment managers. The research has been exploited on behalf of the Department for Energy, Food and Rural Affairs (DEFRA), the Welsh Assembly, and the UK water industry (UK Water Industry Research — UKWIR, and United Utilities). The research has had three distinct impacts: 1) its use addressing EU Water Framework Directive obligations; 2) its on-going influence on construction industry guidance; and 3) the commercialisation of its stormwater pollutant coefficient database for Sustainable Urban Drainage Systems (SUDS) planning software.
The project combined stakeholder knowledge with natural science to identify future scenarios and adaptation options for uplands. Research into upland ecosystem services identified win-win scenarios (e.g. around carbon management) and important trade-offs (e.g. effects on biodiversity). These were embedded within government policy reports leading to additional work in government departments seeking to overcome policy barriers in these areas in order to implement the recommendations from the research. Overcoming these policy barriers has influenced government's decision to work in partnership to launch a new peatland carbon code, focussing on upland peatlands, creating corporate social responsibility (CSR) options for companies via peatland protection and restoration.
This Unit's staff and associates have considerable expertise in land management, focussing on two issues faced in Africa; the management of communal rangelands and the management of native species for the benefit of local communities. Coventry University is a recognized centre of global knowledge on Prosopis, a series of economically and ecologically important tree species, but also widely-considered potentially serious weeds in many countries. Underpinning research carried out at Coventry was pivotal to the correct identification, evaluation and subsequent management and utilisation of the most common tropical species, Prosopis juliflora and Prosopis pallida. Other research, on the management of common rangelands, has provided an understanding of the way common land rights are expressed in communal areas and the social, political and ecological factors which govern them.
The Unit's research has led to economic impacts, including for The Mesquite Company (Texas) who generate USD 150,000 each year from the sale of Prosopis products. The research has also had impact on public policy and society in Kenya and South Africa. In Kenya, the Government changed its approach towards Prosopis from eradication towards management and lifted a blanket-ban on the use of plant-based charcoal as a result of the Unit's research. This enabled the Green Power Station (currently employing 2000 people) to be established. In South Africa, policy debate has been informed by research on the governance of common land. The research has also had impact on creativity, culture and society, informing public and political debate in South Africa, Kenya and India. Beneficiaries include businesses developing new products and producing energy; local communities in South Africa and Kenya, and the South African and Kenyan Governments.
The intensification of food production, fossil fuel combustion and water consumption has led to substantial increases in the amount of nitrogen and phosphorus flushed from land to water. The accumulation of these nutrients in freshwaters, estuaries and the coastal zone has led to reductions in biodiversity, the loss of ecosystem services, and compromised water security. The UK is a signatory to a raft of international conventions and policies which require reductions in the flux of nutrients from land to the water and restoration of ecosystem health and services. To meet these obligations, policymakers need information on the scale of the problem, the sources of nutrients and the effectiveness of intervention measures.
Research in the Unit has directly addressed this need. It has provided robust scientific evidence of the scale of the problem and the sources of nutrient enrichment, and has provided the capability to test intervention and policy scenarios at field to national scales. It has fed directly into the development of monitoring approaches and mitigation measures now in use by the Environment Agency (EA) and Defra, informed the development of UK Government policy in relation to catchment management, and supported compliance with the EU Water Framework Directive, the renegotiation of the Gothenburg Protocol under the International Convention on Long-Range Transboundary Air Pollution, and reporting on discharges of nutrient pollution to the North East Atlantic under the OSPAR Convention.
The primary mission of the Centre for River Ecosystem Science (CRESS: http://www.cress.stir.ac.uk/index.html) is to build and translate scientific evidence into advice to end-users and policy makers in river management, both nationally and internationally. Site-based advice, design and monitoring have been provided to 55 projects, including award-winning river engineering schemes. Independently, our research in community ecology, fluvial geomorphology and agricultural pollutants has supported an outstanding contribution to the UKs response to the key EU Environmental Directives — Water Framework, Flooding, Species & Habitats and Bathing Waters. We have developed the official tools that are now used to determine the status of freshwaters and structure catchment management plans, and trained others in their use, have pioneered risk assessments and modelling of nutrient, pathogen or carbon losses, publicised their effects, scoped mitigation options though engaging with end-users, and steered the pan-European comparison of bio-assessment methods that now underpins common water policy.
Rapid runoff from rural parts of river catchments can pollute downstream water bodies by transmitting sediment, agricultural fertiliser, or other pollutants from extensive diffuse sources, and can also lead to downstream flooding. Environmental managers often try to mitigate these problems by encouraging interventions, such as changes in farming practice or the construction of physical obstacles, which delay runoff from rural catchments. DU geographers have worked with stakeholders to develop a family of flexible user-friendly computer modelling tools which predict and map the likely critical sources of pollution or flooding and the downstream locations that are most at risk. This helps environmental managers target the best locations for intervention and compare the effects of alternative interventions. The software tools have been used by regulatory bodies (e.g. the Environment Agency) and NGOs (e.g. Rivers Trusts) to plan mitigation works and benefit local communities and the environment in many parts of England.