Similar case studies

REF impact found 7 Case Studies

Currently displayed text from case study:

Impact on Maxwell Stamp PLC, its Government Clients and the Government of Azerbijan.

Summary of the impact

BU economic modelling research has driven increased profits for leading international consultants Maxwell Stamp PLC, to the tune of £12 million to date. Simultaneously, the research has benefited the company's clients, including several governments. For example, the research was used to provide advice critical in helping Namibia safeguard revenues of US$700 million annually from the Southern African Customs Union (SACU).

Independent of Maxwell Stamp, the same techniques have been used to strengthen the research capabilities of the Institute for Scientific Research on Economic Reforms, Azerbaijan. This has been integral in the successful development of new, internationally competitive industries and the World Bank naming Azerbaijan one of the top 10 economic reformers.

Submitting Institution

Bournemouth University

Unit of Assessment

Business and Management Studies

Summary Impact Type

Economic

Research Subject Area(s)

Economics: Economic Theory, Applied Economics, Econometrics

Expertise in automotive braking systems helps vehicle and brake manufacturers to improve their desings, to increase custormer satisfaction and sales, and reduce costs

Summary of the impact

Research at the University of Bradford has enabled many major vehicle and brake manufacturers to improve the design of their brakes and braking systems to increase customer satisfaction and sales, and reduce costs. Methods have been developed to predict the thermo-mechanical and dynamic performance of brakes and provide design improvements. Durable solutions have been developed for noisy brakes, which have reduced warranty costs for approximately ten international collaborating companies including Bentley, where a squeal noise from the front brakes of a new vehicle had prevented it from being released for production. Our research has been embedded into short courses, which have trained over 250 engineers since 2008 and is incorporated into Jaguar Land Rover's (JLR) professional training.

Submitting Institution

University of Bradford

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Aerospace Engineering

Design of a new total knee replacement

Summary of the impact

Each year an estimated 1,324,000 artificial knee joints (total knee replacements — TKR) are implanted worldwide; an estimated third of these utilise an implant manufactured by DePuy International. Underlying computer-based research performed by the Bioengineering Sciences Research Group has played a central role during the development of a new design of TKR for DePuy. The design programme, the biggest in DePuy's history, had a budget in excess of US$10 million and aimed to replace the existing TKR system, which had annual sales of approximately US$100 million.

Between 2007-2010, DePuy adopted the computational techniques developed by the group as screening tools to (i) assess polyethylene wear and (ii) account for the effects of surgical variability during the early design phases. DePuy states "This research allowed us to choose the most robust solution when proceeding to mechanical testing and saved years in the design cycle. Patients also benefit from increased confidence in an implant that is able to withstand the rigors of use".

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

1: New design methods from piling research that improve the foundation safety and economy of offshore structures

Summary of the impact

The Imperial College Pile `ICP' effective-stress pile design approaches for offshore foundations offer much better design reliability than conventional methods. Their use delivers substantial economies in many hydrocarbon and renewable energy projects, better safety and confidence in developing adventurous structures in others. The ICP has enabled production in otherwise unviable marginal hydrocarbon fields, new options in high-value deep-water projects and helped eliminate installation failures that can cost hundreds of £million. We present evidence that the research delivered direct benefits exceeding £400m since 2008 in projects known to us, with larger worldwide benefits through project risk reduction and independent exploitation.

Submitting Institution

Imperial College London

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy

Enhancement of 'Upstream' Software Development Methods

Summary of the impact

BU's software engineering research has focused on the improvement of software development methods with a particular emphasis on the `upstream' or requirements phases. The benefits include improved development processes as well as considerable financial savings, as evidenced in this case study. The research has been used locally in projects with medium sized enterprises (SME's) and in collaboration with international partners including National ICT Australia (NICTA) to enhance business and IT alignment (Australia and Japan); the European Commission funded VIsualise all moDel drivEn programming (VIDE) project to impact commercial tools (France and Germany); and with Bosch Automotive (Germany) to enhance model driven development.

Submitting Institution

Bournemouth University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Computer Software, Information Systems

3) GRANIT

Summary of the impact

The GRANIT system is a non-destructive technique for assessing the condition of rock bolts and ground anchors used to support structures such as tunnels. It applies a small impulse to the bolt and interprets the resulting vibration response to provide estimates of load and unbonded length. Initial development of the system was based on the findings of EPSRC projects in tunnels undertaken by the Universities of Aberdeen and Bradford from 1989-1997, resulting in an empirically based method. However, research undertaken at the University of Aberdeen since 1998 has provided the understanding of the process and developed the fundamental engineering science needed to underpin the development of a full commercial system. The GRANIT system is patented, and has been subject to worldwide licence to Halcrow who have undertaken testing and provided a method of ensuring the safety of mines, tunnels and similar structures. Halcrow received the NCE award for Technical Innovation Award for GRANIT in December 2010. The impact of the research has been in part economic, but largely on practitioners and professional services.

Submitting Institution

University of Aberdeen

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering, Resources Engineering and Extractive Metallurgy

Granta Design

Summary of the impact

Research work in the University of Cambridge Department of Engineering (DoEng) created a formal methodology for eco-design, based on lifecycle thinking that can be implemented during product design. This methodology and supporting reference data have been commercialised by DoEng spin-off company, Granta Design Limited, within Granta's software solutions: for engineering and product design in industry, integrating with the CAD environment; and for materials education. These products are incorporated in software suites that have over 200,000 users. Industry case studies demonstrate their value to end customers.

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Information Systems
Economics: Applied Economics

Filter Impact Case Studies

Download Impact Case Studies