Log in
The research improves digital data archives by embedding computation into the storage controllers that maintain the integrity of the data within the archive. This opens up a number of possibilities:
This has impact on three different classes of beneficiary:
Targeted Projection Pursuit (TPP) — developed at Northumbria University — is a novel method for interactive exploration of high-dimension data sets without loss of information. The TPP method performs better than current dimension-reduction methods since it finds projections that best approximate a target view enhanced by certain prior knowledge about the data. "Valley Care" provides a Telecare service to over 5,000 customers as part of Northumbria Healthcare NHS Foundation Trust, and delivers a core service for vulnerable and elderly people (receiving an estimated 129,000 calls per annum) that allows them to live independently and remain in their homes longer. The service informs a wider UK ageing community as part of the NHS Foundation Trust.
Applying our research enabled the managers of Valley Care to establish the volume, type and frequency of calls, identify users at high risk, and to inform the manufacturers of the equipment how to update the database software. This enabled Valley Care managers and staff to analyse the information quickly in order to plan efficiently the work of call operators and social care workers. Our study also provided knowledge about usage patterns of the technology and valuably identified clients at high risk of falls. This is the first time that mathematical and statistical analysis of data sets of this type has been done in the UK and Europe.
As a result of applying the TPP method to its Call Centre multivariate data, Valley Care has been able to transform the quality and efficiency of its service, while operating within the same budget.
The research in this case study has pioneered knowledge management technology. It has had major impact on drug discovery and translational medicine and is widely adopted in the pharmaceutical and healthcare industries. The impacts are:
Researchers in Cambridge have developed a data standard for storing and exchanging data between different programs in the field of macromolecular NMR spectroscopy. The standard has been used as the foundation for the development of an open source software suite for NMR data analysis, leading to improved research tools which have been widely adopted by both industrial and academic research groups, who benefit from faster drug development times and lower development costs. The CCPN data standard is an integral part of major European collaborative efforts for NMR software integration, and is being used by the major public databases for protein structures and NMR data, namely Protein Data Bank in Europe (PDBe) and BioMagResBank.
Open Data has lowered barriers to data access, increased government transparency and delivered significant economic, social and environmental benefits. Southampton research and leadership has led to the UK Public Data Principles, which were enshrined in the UK Government Open Data White Paper, and has led to data.gov.uk, which provides access to 10,000 government datasets. The open datasets are proving means for strong citizen engagement and are delivering economic benefit through the £10 million Open Data Institute. These in turn have placed the UK at the forefront of the global data revolution: the UK experience has informed open data initiatives in the USA, EU and G8.
GATE (a General Architecture for Text Engineering—see http://gate.ac.uk/) is an experimental apparatus, R&D platform and software suite with very wide impact in society and industry. There are many examples of applications: the UK National Archive uses it to provide sophisticated search mechanisms over its .gov.uk holdings; Oracle includes it in its semantics offering; Garlik Ltd. uses it to mine the web for data that might lead to identity theft; Innovantage uses it in intelligent recruiting products; Fizzback uses it for customer feedback analysis; the British Library uses it for environmental science literature indexing; the Stationery Office for value-added services on top of their legal databases. It has been adopted as a fundamental piece of web infrastructure by major organisations like the BBC, Euromoney and the Press Association, enabling them to integrate huge volumes of data with up-to-the-minute currency at an affordable cost, delivering cost savings and new products.
A quiet technology revolution in the UK has been changing the way that police officers on the beat and hospital nurses access and record information, using handheld electronic notebooks that bring large time and cost savings. This revolution began as a University of Glasgow research programme and led to the creation of a successful spin-out company, Kelvin Connect. Acquired in 2011 by the UK's largest provider of communications for emergency services, Kelvin Connect has grown to 30 staff. Its Pronto systems are now in use by 10% of UK police forces and nursing staff in several UK hospitals.
Visual analytics is a powerful method for understanding large and complex datasets that makes information accessible to non-statistically trained users. The Non-linearity and Complexity Research Group (NCRG) developed several fundamental algorithms and brought them to users by developing interactive software tools (e.g. Netlab pattern analysis toolbox in 2002 (more than 40,000 downloads), Data Visualisation and Modelling System (DVMS) in 2012).
Industrial products. These software tools are used by industrial partners (Pfizer, Dstl) in their business activities. The algorithms have been integrated into a commercial tool (p:IGI) used in geochemical analysis for oil and gas exploration with a 60% share of the worldwide market.
Improving business performance. As an enabling technology, visual analytics has played an important role in the data analysis that has led to the development of new products, such as the Body Volume Index, and the enhancement of existing products (Wheelright: automated vehicle tyre pressure measurement).
Impact on practitioners. The software is used to educate and train skilled people internationally in more than 6 different institutions and is also used by finance professionals.
The security of data in printing and network environments is an area of increasing concern to individuals, businesses, government organisations and security agencies throughout the world. Mathematical algorithms developed at the School of Mathematics at Cardiff University represent a significant step-change in existing data security techniques. The algorithms enable greater security in automatic document classification and summarisation, information retrieval and image understanding. Hewlett-Packard (HP), the world's leading PC vendor, funded the research underpinning this development and patented the resulting software, with the aim of strengthening its position as the market leader in this sector of the global information technology industry. Hewlett Packard has incorporated the algorithms in a schedule of upgrades to improve the key security features in over ten million of their electronic devices. Accordingly, the impact claimed is mitigating data security risks for HP users and clients and substantial economic gain for the company.
KCL research played an essential role in the development of data provenance standards published by the World Wide Web Consortium (W3C) standards body for web technologies, which is responsible for HTTP, HTML, etc. The provenance of data concerns records of the processes by which data was produced, by whom, from what other data, and similar metadata. The standards directly impact on practitioners and professional services through adoption by commercial, governmental and other bodies, such as Oracle, IBM, and Nasa, in handling computational records of the provenance of data.