Similar case studies

REF impact found 32 Case Studies

Currently displayed text from case study:

A Novel Method of Composite Design for Structural Engineering

Summary of the impact

University of Nottingham research into a composite design for steel beams and floor slabs has resulted in environmental and economic benefits and an important change in the construction industry. The work has reduced the weight of beams and the overall tonnage of buildings, enabled easier installation and improved structural strength. More than 40 projects, with a total combined floor area in excess of 380,000m2, have used the technology since 2008, and the method's market share has been estimated at up to 60%. The breakthrough has facilitated partnerships between steel frame designers and precast flooring manufacturers, with the value to the latter alone put at more than £5M.

Submitting Institution

University of Nottingham

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Building

7: Structural use of stainless steel

Summary of the impact

National and International design codes are the key vehicles for enabling structural engineering research to impact on practice. Recent years have seen substantial advancements in such codes for stainless steel structures, to which Imperial has made outstanding contributions [A-E]. Imperial research has led directly to improved structural design provisions, enabling more efficient structures, leading to cost savings [G], further promotion of the use of stainless steel in construction [A,H,I] and a reduction in the use of construction resources. The impact and reach of Imperial's research has not only been throughout the industry (producers [H], code writers [A] and practitioners [G,I]) but also global, with widespread influence on UK, European, North American and Asian practice [A].

Submitting Institution

Imperial College London

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering

European codes of practice for civil engineering structures

Summary of the impact

Research led by two members of the University of Warwick's School of Engineering strongly influenced the planning, drafting and technical content of nearly all of Eurocode 4, one of ten European civil engineering standards. Eurocode 4 covers composite structures made of steel and concrete. Since 2010 this standard has been in force in all countries of the European Union (EU) and the European Free Trade Area (EFTA). The Eurocodes are the only set of design rules for publicly-funded structures on land that satisfy national building regulations throughout the EU and EFTA. Their impact on structural engineering is wide-ranging and growing, the principles and methodology contained within these Eurocode 4 will be the basis of engineering design teaching for Chartered Engineers throughout the EU.

Submitting Institution

University of Warwick

Unit of Assessment

General Engineering

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Building

£ millions saved by London Underground and Bridge Owners in UK and North America through research by QUB team

Summary of the impact

£80m has been saved since 2008 by London Underground (LU) and yet more by bridge owners in the UK as a direct result of using the Arching Action (AA) enhancements in strength predicted by our research. The associated disruption would have resulted in enormous congestion, losses economically of £ billions and negative social impact. Multi-million $ savings have also accrued in North America from the use of corrosion free deck bridges, which have minimum maintenance, as has our innovative flexible concrete arch (patented 2004) which has been used for over 40 FlexiArch bridges (£15m in contracts) since 2008.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Materials Engineering

02 - New Standards to Extend the Life of Concrete Infrastructure using Fibre-Polymer Reinforcement

Summary of the impact

ERPE research, since 2001, into the application of Fibre Reinforced Polymer (FRP) composites for strengthening existing civil engineering structures continues to impact design guidelines for preserving and updating the worldwide ageing infrastructure. The lifetime extension of existing infrastructure and buildings is a priority: the UK Government plans to invest up to £250bn over 10 years to return UK infrastructure to `world class' performance. 75% of developed world infrastructure investment covers retrofitting and repair rather than new-build. FRP strengthening is now the method of choice for seismic retrofit, capacity enhancement, structural repair and rehabilitation of concrete and masonry structures.

ERPE research to enhance strength and structural integrity has been used in the development of, or been incorporated into, at least 12 design guides codes and standards worldwide in at least 5 countries including Australia, Canada, China etc.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Materials Engineering
Built Environment and Design: Building

Passively safe street furniture

Summary of the impact

Dr Richard Brooks and his team at the University of Nottingham have been investigating the high strain rate behaviour of composite materials since 2003. This has led to the development of two products that are being installed in streets in the UK and Ireland by East Midlands SME Frangible Safety Posts Ltd. The direct benefits to the company have been: the installation of 900 products in the UK and Ireland; saving of £17k capital cost and 2 months in terms of time to market per product developed and; raising of £1.8M investment to bring the products to market At least one life has already been saved in the Shetland Islands as a direct consequence of the product behaving in the way it was designed to.

Submitting Institution

University of Nottingham

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Structural mechanics - enabling weight reduction and performance enhancement of composite aerospace structures (for redaction)

Summary of the impact

For aerospace vehicles, the development of new materials and structural configurations are key tools in the relentless drive to reduce weight and increase performance (in terms of, for example, speed and flight characteristics). The economic drivers are clear — it is widely recognised that it is worth approximately $10k to save one pound of weight in a spacecraft per launch and $500 per pound for an aircraft over its lifetime. The environmental drivers (ACARE 2050) are also clear — reduced aircraft weight leads to lower fuel burn and, in turn, to lower CO2 and NOx emissions. With such high cost-to-weight ratios, there is intense industrial interest in the development of new structural configurations/concepts and enhanced structural models that allow better use of existing or new materials. Analytical structural mechanics models of novel anisotropic structures, developed at the University's Advanced Composites Centre for Innovation and Science (ACCIS), are now used in the industrial design of aircraft and spacecraft. Based on this research, a new, unique anisotropic composite blade, designed to meet an Urgent Operational Requirement for the MoD, is now flying on AgustaWestland EH101 helicopters that are deployed in Theatre. In addition, the new modelling tools and techniques have been adopted by Airbus, AgustaWestland, Cassidian and NASA and incorporated into LUSAS's finite element analysis software. These tools have, for example, been used to inform Airbus's decision to use a largely aluminium wing design rather than a hybrid CFRP/aluminium wing for the A380.

Submitting Institution

University of Bristol

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Sandwich structures

Summary of the impact

Research at University of Cambridge Department of Engineering (DoEng) has created a new fundamental understanding of the static, dynamic and blast performance of lattice sandwich structures (a repeating pattern of metal struts between two sheets of metal). Ship builders in the Netherlands and the USA have built over 19 ships worth approximately GB200M using this technology since 1/1/2008 with many more planned. These ships are:

  • less likely to rupture in low speed collisions, which is important especially for river tankers
  • compliant with new standards for the carriage of dangerous goods by inland waterways in Europe at a lower cost, because the designs are simplified
  • blast resistant, which is important when considering potential terrorist threats.

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Manufacturing Engineering, Materials Engineering

Economic and environmental benefits of innovative sensor products for military and commercial applications

Summary of the impact

A significant body of research in ultrasonics at the University of Strathclyde led to the formation of Alba Ultrasound Limited in 2000. This successful UK engineering manufacturing company designs and manufactures high quality wideband ultrasonic array transducers for sonar applications to a worldwide client base, delivering benefits ranging from naval and maritime security through to safer ocean environments and informed exploitation of marine resources. Alba Ultrasound's unique array transducers constitute the sensor front-end in many leading sonar systems, and its innovative products are incorporated in a range of sonar devices used by the military and commercial companies. Through application of Strathclyde research, the company has experienced a significant period of growth during 2008-2013, with a three-fold increase in employees and turnover rising from £750k to £3.8M.

Submitting Institution

University of Strathclyde

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering, Materials Engineering

Inclusive design

Summary of the impact

The i~design research programme, which has been running in the University of Cambridge Department of Engineering (DoEng) since 2000, sought to understand population diversity in order to better inform design decisions for mainstream everyday products and services. Impact from this programme, since 2008, includes: skills embedded in companies through direct training of over 280 designers and design managers from industry; direct involvement in the improved design of more than 10 new products and services that have gone into production; educational resources for teaching Design and Technology trialled in nine secondary schools; over 800 wearable impairment simulators sold; and extensive web-based guidance, methods and tools for inclusive design accessed in over 170 countries.

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Information Systems
Built Environment and Design: Design Practice and Management
Education: Specialist Studies In Education

Filter Impact Case Studies

Download Impact Case Studies