Log in
Twenty years of comprehensive research into long-lasting insecticidal nets (LLINs) by LSHTM have contributed substantially to the prevention of around 1m deaths from malaria between 2008 and 2013. The research made a direct impact on guidelines and strategies issued by WHO as well as driving new technologies for insecticide-treated nets (ITNs), with downstream commercial benefits. Without the evolution of LLIN technology driven by LSHTM research, the large-scale roll-out of the new generation of nets (described in more detail in the other LSHTM impact case study on this body of research) would not have been possible.
LSHTM researchers carried out the initial trials of intermittent preventive treatment in infants (IPTi), a strategy to improve malaria control in very young children. LSHTM staff were active in setting up and running a dedicated research consortium which developed and executed a research agenda to provide data to inform policy. School staff presented evidence to a series of WHO policy-making meetings which in 2009 recommended that IPTi should be included as part of routine malaria control. This policy, which has been adopted in one country and discussed by eight others, has the potential to benefit hundreds of millions of lives.
A substantial programme of research carried out by LSHTM has provided evidence for a major shift of strategy and progress in global efforts to eliminate malaria. As a result, WHO now recommends a policy designed to ensure medically-treated individuals are non-infectious to mosquitoes. In addition, drug development partnerships such as the Medicines for Malaria Venture now include transmission interruption in the target product profiles for new medicines. Several countries have made strategic decisions for the prevention of malaria transmission on the basis of the research, and the senior investigators act as advisers to international anti-malaria initiatives.
Research in West Africa by LSHTM and partners has shown that monthly treatment with effective antimalarial drugs during the rainy season provides children with a very high degree of personal protection against malaria, can be delivered on a large scale by community health workers at moderate cost, and with no serious side-effects. Based on this research, WHO now recommends that children living in Sahel areas where malaria is a major problem should receive such `seasonal malaria chemoprevention' (SMC) with sulfadoxine-pyrimethamine plus amodiaquine. Ten countries have incorporated SMC into their strategic plans for malaria control.
Research at LSHTM has been central to the introduction of the Hib vaccine in developing countries. School staff were involved in the 1990s Gambia Hib vaccine trial, which demonstrated the impact of Hib vaccine on pneumonia. Through their work on the subsequent Hib Initiative, their research was instrumental in speeding up evidence-based decision-making for Hib vaccine introduction in a number of countries, mainly in Asia and Africa. The project has been an outstanding success, with Hib vaccine now introduced into 71 of the 73 countries eligible for GAVI Alliance support.
Malaria in Africa, traditionally diagnosed from fever symptoms, has been massively overdiagnosed, and other causes of fever missed. This research demonstrated the magnitude of overdiagnosis, undertook trials of rapid diagnostic tests, identified alternative bacterial diagnoses, completed economic appraisals and studied prescriber behaviour. The research underpinned a major change in policy by WHO (2010), substantial investments by the Global Fund to fight HIV, TB and Malaria (GFATM), and changed clinical practice, to direct antimalarials to malaria patients only. In one country alone, 516,576 courses of inappropriate artemisinin-based combination therapy (ACT) were averted, worth in excess of $1m.
Research carried out by LSHTM made a fundamental contribution to the creation of the Affordable Medicines Facility — malaria (AMFm), a financing mechanism initiated to improve access to effective antimalarials through subsidies and price negotiations with drug manufacturers. Drawing on LSHTM research showing the importance of the private sector in supplying antimalarial medicines, the scheme was proposed by the US Institute of Medicine (IOM) and piloted in Kenya and Tanzania. After its 2009 launch, a subsequent evaluation by LSHTM and others using LSHTM methodological innovations led to AMFm's integration into ongoing funding streams.
Vitamin A deficiency (VAD) is a major public health problem in low- and middle-income countries with young children and pregnant women particularly at risk. Over the last 20+ years LSHTM researchers have carried out a series of definitive trials in collaboration with the Ghana Health Service to evaluate the impact of different vitamin A supplementation (VAS) strategies on maternal and/or child survival. Findings have had major impacts on national and global VAS programmes and influenced WHO guidelines on VAS in: infants and children 6-59 months of age; infants 1-5 months of age; postpartum women; and pregnant women.
Integrated Vector Management (IVM) was developed by the World Health Organisation to control vector borne diseases using combinations of interventions. Professor Steve Lindsay and his team have contributed to the development and assessment of many of the tools used for vector control, including insecticide-treated bed nets (ITNs), larval source management and house screening for malaria control. This research has influenced international policy on the control of malaria and other important diseases. It is estimated that 294 million ITNs have been purchased for malaria control, and have helped save 1.1 million lives over the past decade.
Work by LSHTM researchers has led to a greater understanding of Plasmodium malaria parasite species and contributed new methodologies for diagnosis. As a result, patients with the uncommon species P. knowlesi and many hundreds with P. ovale spp. have been correctly diagnosed by polymerase chain reaction (PCR), and the rapid detection of parasite DNA is revolutionising clinical trial design. The work has led to the successful commercialisation of a low-cost, easy-to-use malaria testing kit for use in developing countries. Through media outputs and further research, the work has taken awareness of the issues surrounding malaria diagnostics to an international audience.