Log in
Impact on the environment
Economic impact
Impact on practitioners
Loughborough University's (LU) research collaboration with The Hardstaff Group has resulted in a commercial Oil-Ignition-Gas-Injection system (OIGI®), which substitutes natural gas for Diesel oil in heavy goods vehicles. Using optical diagnostics OIGI® was redesigned, increasing average substitution rates from 45% to 60%. The economic impact for Hardstaff was a fuel saving of £406k per annum. The research allowed Hardstaff to create new business with Mercedes-Benz in the UK and Volvo in Sweden. OIGI® reduces CO2 by up to 15%, harmful nitrogen oxides and particulate emissions by 30%. The research also demonstrated, for the first time, dual fuel technology in small, high-speed diesel engines, paving the way for its application in passenger cars.
University of Huddersfield research into engine technologies has resulted in a major new partnership with the UK arm of engineering multinational BorgWarner, leading to the company increasing R&D capabilities in the UK. This collaboration, funded partly by parent company BorgWarner US and partly by the government's Regional Growth Fund, involves multi-million-pound investment, as well as significant job creation and safeguarding. It was a key factor in the company securing a substantial contract with Jaguar Land Rover, whose decision was informed by the University's capacity to help BorgWarner further its R&D activities and upskill its workforce for the benefit of the UK automotive supply chain and the local and national economy.
Improved measurement of fuel behaviour in automotive engines has contributed to the success of the AJ133 V8 engine, which powers over [text removed for publication] vehicles sold since 2009. The research, carried out at the University of Oxford in collaboration with Jaguar Land Rover (JLR), developed techniques to improve the understanding of combustion dynamics in engines and consequently enabled improvements to fuel consumption, emissions and engine reliability. Impacts include contributions to (1) JLR's improved engine design process and (2) improved fuel efficiency and thus lower emissions.
This research project, carried out at the University of Derby, was used to develop an engine performance monitoring system and a data optimisation method for engine management systems for Land Rover. The project delivered two pieces of software developed for data modelling and optimisation with respect to the engine test bed. This has significantly reduced the engine test time on the test bed by up to 30%, reduced the cost of each engine test and provided optimum engine operation parameters to the Engine Control Unit (ECU), which has resulted in lower emissions and improved fuel economy. The project was started in 2000 and completed in 2008. However the outcomes of the research and developed software tools are still used by the Land Rover engine test group.
The University of Manchester and Delphi Diesel Systems jointly developed a reverse tapered micro-hole drilling technique, which has resulted in wide commercial applications for the manufacture of fuel injection nozzles in diesel engines and is used by Volkswagen, Ford and Renault in passenger cars and trucks. The technique has resulted in 1.5% fuel saving, 35-40% reduction in particulate matter emission, 20% reduction in NOx emission, 3% reduction in CO2 emission, and allows diesel engines to satisfy the new EU emission legislation Euro 5 in 2008/2009. Delphi's diesel engine component business increased by €0.8 billion/year as a result of the new fuel injection technology.
Cranfield University's research in computational fluid dynamics (CFD), turbulence models, studies of instabilities and the development of multi-scale methods has reduced the computational uncertainty in the modelling and simulation used by the Atomic Weapons Establishment (AWE) to support the safety and performance of nuclear weapons.
Cranfield's research in compressible turbulent flow for Low Mach numbers is now employed to increase accuracy in CFD codes employed by the German Aerospace Agency DLR, Pennsylvania State University, and the French Commissariat a l'Energie Atomique, which use this work to model flows ranging from turbulent mixing through inertial confinement fusion (ICF) to scramjets.
Cardiff University's research has provided quantitative characterisation of transient fuel sprays under engine condition for the first time. This has enabled integrated design optimisation of Gasoline Direct injection (GDi) engines, through computer simulation validated by Cardiff's experimental measurements. The method has been developed and used in collaboration with Ricardo, a world-leading engine design consultancy, and has resulted in:
Environmental impact There have been substantial reductions in global CO2 emissions. Prior to 2012, GDi engine production had resulted in over 20M tonnes CO2 reduction globally, including 10M tonnes across Europe. A global reduction of 10M tonnes/year is predicted by 2020. Gasoline engines designed or developed by Ricardo in collaboration with Cardiff have provided a considerable contribution to this reduction. Cardiff's measurement techniques provided an essential step in designing these engines. For example, the PETRONAS engine uses 20% less fuel and produces 80% less NOx.
Improved Professional Engineering Practice Cardiff's experimental validation methodology has enabled Ricardo to design engines through simulation rather than step-wise empirical development, significantly reducing lead time.
Rail transport is the greenest form of transport in that it produces the least pollution of the environment. However, the noise from squealing trains has been a major factor preventing the wider use of rail transport in populated areas, especially in cities, where trains have to traverse tight curves in built-up areas. Research carried out at Keele University on curve squeal gave crucial input to developing an effective control method (KELTRACK friction modifier, developed by the company LB Foster Friction Management). This is a device by which a thin film is applied at the wheel-rail interface, which in turn destroys the generation mechanism of curve squeal. The KELTRACK friction modifier is now used in transport systems all over the world, especially in underground systems, such as the metros of Tokyo, Beijing and Madrid.
Our flow modelling and process optimisation research has improved significantly the scientific understanding of key industrial coating, printing and droplet flow systems. We have implemented our research findings in software tools for staff training and process optimisation which have enabled: (i) the worldwide coating industry to improve the productivity and sustainability of their manufacturing processes; (ii) [text removed for publication]; (iii) a major automotive supply company to develop an award-winning droplet filtration system for diesel engines. [text removed for publication].