Similar case studies

REF impact found 60 Case Studies

Currently displayed text from case study:

Advanced fluid flow modelling improves the efficiency of industrial burners

Summary of the impact

Using advanced mathematics and numerical modelling we have demonstrated how fundamental understanding of laminar-turbulent transitions in fluid flows can save energy. From 2008 we helped the cleantech company, Maxsys Fuel Systems Ltd, to understand and improve their technology and demonstrate to customers how it can reduce fuel use by 5-8%. Customers including Ford Motor, Dow Chemical and Findus testify to the impact from financial savings and reduced carbon emissions obtained by installing Maxsys products on industrial burners used widely in many industrial sectors including automotive, bulk chemicals and food. In 2010, Selas Heat Technology Company bought the Maxsys brand to invest in this success.

Submitting Institution

Aston University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Interdisciplinary Engineering

13. Increased safety and efficiency of oil and gas process designs from improved flow assurance

Summary of the impact

Multiphase flow research at Imperial has developed bespoke software code, and provided unique data for validation of commercial codes used for oil-and-gas design. This research has enabled global oil companies (e.g. Chevron) to undertake successfully the design of deep-water production systems requiring multi-billion pound capital investments. This research has also allowed SPT Group (now owned by Schlumberger), one of the largest software (OLGA) providers to the oil industry, to maintain their position as market leaders.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Innovative Tunnel Backfill by Pneumatic Conveying of Dry Particulate Materials.

Summary of the impact

Research at GCU led to a novel method for backfilling pipeline tunnels providing the ability to fill tunnels three times more quickly than the traditional method resulting in a cost saving of £1.5M on a single project. This approach is now best practice at Murphy Pipelines Ltd (MPL) and features in current tenders to a value of £30M. The change in fill material lowered the carbon footprint by 5000 tonnes in a CEEQUAL award winning project, in addition, the removable fill material allows the recycling and re-use of tunnels, adding to the assets of the company and reducing costs.

Submitting Institution

Glasgow Caledonian University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Optimal design of flow handling systems using computational fluid dynamics

Summary of the impact

University of Huddersfield research into the optimal design of flow-handling systems has been credited with "transforming" the development strategies and global market sales of an industrial partner. Weir Valves and Control Ltd has enjoyed a 75% saving in design lead time and a 1,800% increase in annual sales - from several thousand before its collaboration to millions in 2013 - through the structured integration of researchers' computational fluid dynamics expertise in its design process. The success of this collaboration, which has been described as an exemplar of a Knowledge Transfer Partnership, has also led to further research contracts.

Submitting Institution

University of Huddersfield

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Interdisciplinary Engineering

Bristol research helps reduce the threat to people and property from snow avalanches

Summary of the impact

Research carried out in the School of Mathematics at the University of Bristol between 1998 and 2005 has been instrumental in the development of structures that arrest or deflect the rapid flow of snow that characterises avalanches in mountainous regions of the world. The research has been embodied in a series of guidance documents for engineers on the design of such structures and many defence dams and barriers have been built across Europe since 2008. The guidance is now adopted as standard practice in many of the countries that experience avalanches. Investment in avalanche defence projects based on the design principles set out in the guidance runs into tens of millions of pounds. The Bristol research is also used internationally in the training of engineers who specialise in avalanche protection schemes. Given the scale of the threat to life and property from these potent natural hazards, the impact of the research is considerable in terms of the societal and economic benefits derived from the reduction of the risk posed by snow avalanches.

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

17. Improving the Aerodynamic Performance of Formula One Racing Cars

Summary of the impact

Since the 1970's the influence of aerodynamics on racing car design has risen substantially, and now in the modern era it is seen as one of the most important factors in producing a race-winning car. Research carried out in the Department of Aeronautics at Imperial College London, into flow control techniques and the development of cutting-edge numerical and experimental methods has allowed specific and significant improvements in the aerodynamic design of Formula One racing cars. This has led to reduced lap times and a more competitive racing environment. These advances have also contributed to improving handling, resulting in a safer racing environment. This research has provided the Formula One industry, which has an estimated annual turnover of $2 billion, with a means to employ engineers who have the key knowledge and insights that allow them to continue to innovate in a tightly controlled engineering environment. The Chief Designer or Chief Aerodynamicist in six out of the twelve 2012 F1 teams have carried out relevant research at Imperial College London.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Case Study 4: Novel optimisation significantly reduces costs, increases turnover and reduces emissions

Summary of the impact

Optimisation tools developed in the UoA have significantly advanced the ability to find the best designs for complex systems in cases where these were previously unobtainable. These optimisation tools have been implemented in several companies to shorten design times, reduce costs and reduce CO2 emissions. This has brought about new multi-million pound revenues, long-term contracts, increased employment and contribution to sustainability targets.

Submitting Institution

University of Leeds

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics, Statistics

Chemtrix - Scalable Flow Chemistry

Summary of the impact

Chemtrix Ltd. was established in February 2006 as a 50-50 joint venture between the University of Hull and Lionix Ltd. In 2008 the company attracted investment from Limburg Ventures BV, Panthera, Technostartersfund, Microfix BV and Hugo Delissen (€2 million) that led to the creation of Chemtrix BV. In 2009 the Company launched Chemtrix USA and a second investment round followed with investors Particon BV. In 2012 ESK Ceramics GmbH & Co. KG, acquired a minority interest (30%) in Chemtrix BV based on a valuation of €5.3 million.

The three products developed and marketed by Chemtix, Labtrix®, KiloFlow® and Plantrix®, are differentiated from competitor products as they offer `scalable flow chemistry', such that optimised reaction conditions can be easily scaled from R&D to production. In addition to the employees and investors in Chemtrix the main non-academic beneficiaries of the research have been industrial customers such as Janssen Pharmaceutica NV, Edward Air Force Base, Iolitec GmbH and DSM.

Submitting Institution

University of Hull

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Chemical Engineering, Interdisciplinary Engineering

Aerodynamic modelling saves development costs of Joint Strike Fighter (JSF)

Summary of the impact

Cranfield University has conducted research in jet aerodynamics, particularly for vertical or short take-off and landing (V/STOL) aircraft applications, for more than 20 years, with funding from the aerospace industry, MoD and RCUK, making a major contribution to the continuing development of the new Joint Strike Fighter aircraft.

The impact of the research has been:

  • savings of many £M in development costs of the Lockheed Martin F-35B (Joint Strike Fighter) by reducing the development time, improving safety with less restrictive operating conditions, and enabling better design decisions.
  • a series of continuing professional development courses on V/STOL aircraft design delivered internationally to more than 300 engineers and managers.

Submitting Institution

Cranfield University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Interdisciplinary Engineering

UOA10-01: Computational fluid dynamics: the Rolls-Royce HYDRA code for jet engine design

Summary of the impact

Rolls-Royce uses the HYDRA computational fluid dynamics (CFD) code for the design of all of its new gas turbine engines. The HYDRA CFD package, including the mathematical theory behind it, was developed by Professor Mike Giles and his research team in the period 1998-2004 at the University of Oxford, and subsequently transferred to Rolls-Royce, forming the basis of the RR corporate CFD strategy with an investment of over 100 person years in development.

Since 2009, HYDRA has become the standard aerodynamic design tool across Rolls-Royce, and has been used to design Rolls-Royce's Trent 1000 engine and the newer Trent XWB. HYDRA has enabled Rolls-Royce to save over [text removed for publication] in test rig expenses, provides superior accuracy compared to its competitors such as FLUENT, and has contributed to increases in engine efficiency of up to [text removed for publication], which in turn has led to higher sales and increased revenue for Rolls-Royce.

Submitting Institution

University of Oxford

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics
Information and Computing Sciences: Computation Theory and Mathematics

Filter Impact Case Studies

Download Impact Case Studies