Research Subject Area: Theoretical and Computational Chemistry

REF impact found 30 Case Studies

Currently displayed text from case study:

Abraham solvation parameter approach benefiting the chemical industries

Summary of the impact

The Abraham solvation parameter approach developed at UCL has become integral to the work carried out by drug discovery teams at [text removed for publication] and other major pharmaceutical companies, as well as research and development groups at international chemical companies including Syngenta and [text removed for publication]. It enables chemists to predict physicochemical and biochemical properties of chemicals, including drugs and agrochemicals, rapidly and efficiently, without the need to conduct time-consuming experiments. The method helps drug discovery teams to identify and optimise the most promising compounds, and often results in fewer compounds being made before a candidate is selected, saving time and resources. The approach has been integrated into software used for drug discovery [text removed for publication].

Submitting Institution

University College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry
Biological Sciences: Biochemistry and Cell Biology

14. Advanced thermodynamic modelling for complex fluids

Summary of the impact

The SAFT-VR family of thermodynamic models has made it possible to predict reliably the behaviour of the many complex and challenging fluids that are found across a range of industrial sectors, including oil & gas, chemicals (refrigerants, surfactants, polymers), energy (carbon capture solvents, carbon dioxide-rich streams) and pharmaceuticals.

The SAFT-VR models have had a wide impact on industrial practice. At BP, they have been used to design novel surfactants that have increased the lifetime of oil fields up to five-fold, avoiding maintenance interventions costing millions of dollars and increasing productivity by 50% (worth $2-3 million per year per well). At Borealis, they have been used to understand how to increase the productivity of the reactor in the flagship Borstar process by 30%. At ICI and Ineos/Mexichem, they have been used to design efficient processes for producing replacement refrigerants with much reduced reliance on extreme and expensive experiments involving hydrogen fluoride, a highly corrosive substance. Industrial demand for access to the predictive capabilities of SAFT-VR has been such that Imperial College has licensed the software in 2013 to a UK SME in order to distribute it worldwide to users.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry
Engineering: Chemical Engineering

Case study 2. “Filling without Drilling”: Use of Self Assembling Peptides as Biomimetic Scaffolds in Treatment of Early Enamel Decay (Caries) Lesions

Summary of the impact

Multi-disciplinary research at Leeds has led to a step change for treatment of early tooth decay using a minimally invasive regenerative therapy, eliminating the need for surgical excavation ("Filling without Drilling"). The patented technology was licensed to a spin-out company (Credentis ag), completed "first in man" trials at Leeds [6] and received a CE-label for clinical use in Switzerland, Europe and Canada. The trials demonstrated clinical efficacy that is safe and favoured by patients. Two new products are now on the market. Credentis were recognised as one of the top start ups in Switzerland [A], won the Swiss Technology Award in 2013, have established a new UK base and have engaged a UK company as suppliers, creating new business for a UK owned industry.

Submitting Institution

University of Leeds

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Health

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Theoretical and Computational Chemistry
Biological Sciences: Biochemistry and Cell Biology

Castep

Summary of the impact

CASTEP is a parameter-free and predictive quantum mechanical atomistic simulation code developed by Professor Payne in the Department of Physics at the University of Cambridge. CASTEP has been sold commercially by Accelrys since 1995, with more than 800 industrial customers using the package. As part of Accelrys' Materials Studio, it can be used by non-experts to determine a wide range of physical and chemical properties of materials. Companies can thus perform `virtual experiments' using CASTEP. As quantum mechanical simulations can be cheaper and more flexible than experiments, CASTEP invariably reduces costs and accelerates product development.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Macromolecular and Materials Chemistry, Theoretical and Computational Chemistry

Commercialisation of materials modelling software (Castep)

Summary of the impact

Durham researcher, Prof Stewart Clark, is one of the six original co-developers of the Castep software package which calculates the electronic, physical and chemical properties of materials from first principles. Castep was written to solve a variety of research problems from semiconductor devices and liquid crystal displays, to the behaviour of Earth minerals under very high pressure, molecular dynamics and biological systems. The software package was commercialised for use in industry under license by Accelrys Inc., where it is bought and used by ~1000 high-tech companies for development of new materials in chemical, pharmaceutical, auto and jet engine manufacturing industries. Total sales revenue for Accelerys from the Castep code is in excess of $30M.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Theoretical and Computational Chemistry
Engineering: Materials Engineering
Medical and Health Sciences: Neurosciences

Development of abatement strategies and policies for air pollutants facilitated by the Master Chemical Mechanism

Summary of the impact

Air pollution is a major health concern and government policy driver. Leeds researchers and colleagues have developed a detailed chemical mechanism which describes reactions in the lower atmosphere leading to the formation of ozone and secondary particulate matter, key air pollutants. The so-called `master chemical mechanism' (MCM) is considered the `gold standard' and has been used by the UK government and industry groups to inform their position on EU legislation and by the US EPA to validate and extend their regulatory models. The Hong Kong Environmental Protection Department has used the MCM to identify key ozone precursors and provide evidence for abatement strategies.

Submitting Institution

University of Leeds

Unit of Assessment

Chemistry

Summary Impact Type

Political

Research Subject Area(s)

Chemical Sciences: Theoretical and Computational Chemistry, Other Chemical Sciences

Electronic noses for food, health and other applications

Summary of the impact

The first commercial electronic nose (aka e-nose) instruments were designed, developed and built by researchers in Warwick's School of Engineering in the 1990s, and commercialized by [text removed for publication]

Warwick's patents in chemical sensing also led in 2008 to the creation of a spin-out company, Cambridge CMOS Sensors Ltd (CCS), which provides low-cost low-power gas-sensing technology and is already established in the gas-sensing market.

The smart sensors and instrumentation developed as a result of the pioneering research in artificial olfaction and chemical sensing have had economic impacts across a wide range of sectors, in particular in food quality, healthcare and consumer electronics. The two companies employ around 100 people and the thousands of e-nose instruments sold help quality assurance of foods, beverages and are now being deployed in hospitals for bacterial detection.

Submitting Institution

University of Warwick

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Theoretical and Computational Chemistry
Engineering: Electrical and Electronic Engineering, Materials Engineering

Enabling Zyvex Labs to develop atomically precise manufacturing processes

Summary of the impact

The underpinning research involved modelling the diffusion of hydrogen on silicon surfaces, and the electronic structure of dopant atoms on silicon surfaces. This data was used to inform, guide and develop the atomically precise manufacturing processes of Zyvex Labs. These processes remove hydrogen atoms from a silicon surface to create patterns with atomic precision for later overgrowth. As a result of the UCL research, Zyvex Labs has already obtained funding of $14 million, several jobs have been created, and at least two products are being brought to market.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry

UOA10-15: Exploitation of rapid protein structure prediction tools

Summary of the impact

Novel rapid methods for predicting protein structure, particularly functional loop structures, have been developed by researchers at the University of Oxford. These have been made accessible to a large audience through a suite of computational tools. The methods have had general impact through download and online access and specific impact through extensive use within UCB Pharma. The tools are much faster than other methods, creating equal or better predictions in approximately a thousandth of the time. Commonly exploited by UCB Pharma in their drug discovery pipeline, they have cut computational cost, but, more importantly, they have greatly reduced the time for process improvements. UCB Pharma estimate that the tool pyFREAD alone saves over £5 million in the discovery costs for a single drug molecule. FREAD (a version of pyFREAD coded in C) is also being used more widely, for example by Crysalin Ltd and InhibOx.

Submitting Institution

University of Oxford

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Chemical Sciences: Theoretical and Computational Chemistry
Medical and Health Sciences: Neurosciences

Ilika plc: Driving Global Innovation in Next Generation Materials

Summary of the impact

The unique application of combinatorial chemistry in materials science at Southampton has directly underpinned the success of University spin-out, Ilika Technologies. Since 2008, the breadth of applications of the research has allowed Ilika:

  • to form a partnership, worth around £4m, with Toyota in the development of battery materials for electric vehicles
  • to optimise new phase change memory materials now used by NXP in embedded memory applications, and
  • to create and sell a subsidiary, Altrika Ltd, that has provided cell-based skin regeneration therapies to 50 severe burn victims.

Between 2008 and 2012, Ilika enjoyed considerable growth, doubling employment to 35 staff, increasing turnover by approximately 25% annually, and floating on the AIM with a market capitalisation of £18.7 million.

Submitting Institution

University of Southampton

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry

Filter Impact Case Studies

Download Impact Case Studies