Similar case studies

REF impact found 10 Case Studies

Currently displayed text from case study:

How LCD research created one of the UK’s fastest growing companies

Summary of the impact

Researchers, and the work they undertook at the University of Exeter during the 1990s, led to the formation of the Defence Evaluation and Research Agency's (now QinetiQ) first spinout company: ZBD Displays Ltd. Achieving revenue growth of 17,910% over the last five years, ZBD's unique electronic retail signage and shelf-edge labelling technology is used by major retailers all over the world. The invention used the know-how developed by ZBD's company founders whose R&D and engineering teams all include former postgraduates from the School of Physics and Astronomy, who acquired their expertise under the supervision of Professors Roy Sambles and Bill Barnes.

Submitting Institution

University of Exeter

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

1. Q Chip Ltd - Micro Technology for Injectable Therapeutics

Summary of the impact

Economic impact is claimed through the growth of the biopharmaceutical spin-out company Q Chip Ltd. During the REF period, this has created 19 new jobs, £7.5M investment, a new Dutch subsidiary (Q Chip BV), and staged-payment, six figure contract sales to four major international pharmaceutical companies.

Q Chip has generated over £928K in contract sales from the pharmaceutical industry from 2008-2012, with further sales of over £1M projected in 2013-14.

Originally established by Professor David Barrow in 2003 from his micro technology research, Q Chip has developed new processes and miniaturised equipment to encapsulate materials, including drugs, within uniform polymeric microspheres as injectable therapeutics.

Submitting Institution

Cardiff University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Engineering: Interdisciplinary Engineering

Dye-Sensitised Solar Cells

Summary of the impact

In 2012, it is estimated the $145bn was invested in solar photovoltaic technology. Dye-Sensitized Solar Cells (DSC) are expected to play an increasing role in renewable energy generation over the next decade and beyond, but several practical issues need to be overcome to facilitate large-scale economic production. Fundamental research at Bangor has laid the ground for collaborative work with industry which has overcome several of the key production constraints in their manufacture, increasing production speed and efficiency and substantially reducing costs. As a result, we have developed a Technology Roadmap with a major multinational partner (TATA) which has led to significant investment in plant and to the production of pilot products in the form of photovoltaic roofs, currently undergoing outdoor testing.

Submitting Institution

Bangor University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Electrical and Electronic Engineering, Materials Engineering

Affordable Diffusion Bonding (ADB) of laminate sheet to produce micro-cellular structures relevant for ultra-lightweighting and high efficiency thermal and chemical devices for the aerospace, automotive, medical, chemical manufacturing sectors.

Summary of the impact

Diffusion bonding (DB) is well-known for producing structured materials with fine scale features and is a critical technology for high efficiency reactors, e.g. heat exchangers and fuel cells, but currently equipment is slow and expensive (and there are size limitations to the `assemblies' that can be built). The University has researched and developed, with industry partners, a rapid affordable diffusion bonding (ADB) process involving direct heating to provide appropriate temperature and stress states and utilising flexible ultra-insulation (vacuum) for pressing titanium (and now aluminium) sheets together. The process operates at low stresses thus avoiding `channel' collapse. Investment is taking place in the partner companies to exploit the technology. A breakthrough has been achieved in the chemical machining of three dimensional structures for laminar flow technology assemblies in aluminium and titanium, that can be built by ADB.

Submitting Institution

University of Wolverhampton

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering

UOA08-07: Understanding solid-liquid reactions to improve manufacturing processes for agrochemicals at Syngenta

Summary of the impact

The cost of goods is an especially important issue in developing commercially available agrochemicals, which must be manufactured on a large scale. Richard Compton's research at the University of Oxford has led to a step change in the understanding of heterogeneous reaction mechanisms for liquid — organic solid or liquid — inorganic solid processes involved in large-scale manufacturing processes. Compton's work has had particular impact on optimising the processes used by Syngenta AG in its manufacturing of agrochemicals. Since 2008 the insights gained on inorganic-base dissolution have been of great benefit to Syngenta in its development of scalable robust manufacturing processes, particularly in relation to production of its fungicide Amistar and insecticide Actara, which are two of the world's largest selling products of this type. In 2012 Syngenta achieved total sales of over $ 14 billion, $ 4.8 billion of this from fungicide and insecticide revenues.

Submitting Institution

University of Oxford

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

The Impact of Physical Organic Chemistry Research at Huddersfield

Summary of the impact

University of Huddersfield research in physical organic chemistry has delivered economic, industrial and societal benefits. It has led to process improvements in chemical manufacturing, most notably in the optimisation of the synthesis of antisense oligonucleotides and in the use of liquid ammonia as a solvent. It has also led to the development of new inhibitors of bacterial β-lactamases for use as antibacterials. The research team's expertise has been reflected in the success of IPOS (Innovative Physical Organic Solutions), a unit established in 2006 to carry out research in process and other areas of chemistry for the chemical industry. IPOS expanded significantly from 2009 to 2013 and has now collaborated with more than 150 companies, many of them based in Yorkshire/Humberside where regeneration is critically dependent on the success of new, non-traditional, high-technology firms and industries. Through these collaborative projects, IPOS has contributed to the growth and prosperity of both regional and national industry.

Submitting Institution

University of Huddersfield

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

The impact of the production and characterisation of graphene

Summary of the impact

The isolation and characterisation of graphene by Geim and Novoselov demonstrated its potential to underpin disruptive technological change across an incredibly broad range of industries. This resulted in rapid global uptake of new technologies in the REF period, with at least $200m recent commercial investment in graphene production. Blue-chip companies have also made significant investments leading to the generation of 7740 industrial patents. The first set of graphene-based products has reached the market with revenues already exceeding $10m per month. This commercial activity has been matched by global shifts in public research and innovation funding of at least $2.4bn, as governments have moved to facilitate graphene research and commercialisation.

Submitting Institution

University of Manchester

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

The London Low Temperature Laboratory

Summary of the impact

The London Low Temperature Laboratory (LLTL) led by Professor Saunders in the Department of Physics, has developed novel ultra-low temperature (ULT) platforms and instrumentation alongside its programme of fundamental research.

  • The group's research has acted as a key driver for improvements in scientific instrumentation, refrigeration and thermometry, which have met critical market needs, including the capability to measure the absolute temperature in these extreme environments.
  • It has led to a direct economic impact to industry through the development of new commercial scientific instrumentation products.
  • Key partners in delivering impact are Oxford Instruments Nanoscience (OIN), the European National Measurement Institutes (NMIs), and the European Microkelvin Consortium.

Submitting Institution

Royal Holloway, University of London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Materials Engineering
Technology: Communications Technologies

Commercialisation of Ferroelectric Liquid Crystal over Silicon Microdisplays

Summary of the impact

Impact: Economic gains

PHYESTA research has led to the setting up of a company now known as ForthDD. Since 2008 it has increased its annual revenue by more than 25% to around US $5M, and its global workforce from 25 to 35. It has released new products directly underpinned by PHYESTA research as recently as October 2012.

Significance:

A consortium involving PHYESTA staff in collaboration with Edinburgh's School of Engineering and five industrial partners realised the world's first high-resolution ferroelectric liquid crystal over silicon (FLCOS) microdisplay. This digital display attracted investment from the UK, Taiwan, and USA of over $40m, and was taken forward to production by MicroPix, MicroVue, and Forth Dimension Displays.

Reach:

ForthDD now has offices in Valencia, USA, and Berlin, Germany. The company designs, develops and manufactures single chip microdisplays used in the demanding near to eye (NTE) training and simulation systems, HD video camera viewfinders, medical imaging systems and virtual reality and head-mounted displays.

Beneficiaries:

ForthDD, its customers and business partners (e.g. in the medical imaging sector).

Attribution: This work was led within PHYESTA by Professor David Vass involving PHYESTA and done in collaboration with Edinburgh's School of Engineering.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Communications Technologies

XeraCarb Limited: A Spin-out from Sheffield Hallam University Manufacturing Novel Ceramic Composites

Summary of the impact

XeraCarb Ltd is a spin-out company formed in 2011 to exploit a class of ceramic composite materials co-invented by Jones. These materials were first devised in 2008 via a Materials and Engineering Research Institute (MERI) Knowledge Transfer activity and developed from 2009 onwards through a series of UK Ministry of Defence (UK MoD)-funded research projects. XeraCarb was spun out after the underpinning research won a national award in 2011 as the most promising UK materials system for commercialisation. The applications for XeraCarb's materials range from body- and vehicle-armour to kiln furniture and wear-resistant components. The company has attracted significant venture capital investment and is valued at over £1m. It has set up an independent production facility, has appointed employees, has been awarded a TSB grant, has materials undergoing trials in respect of a number of applications, and has delivered its first orders.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies