Similar case studies

REF impact found 74 Case Studies

Currently displayed text from case study:

Dye-Sensitised Solar Cells

Summary of the impact

In 2012, it is estimated the $145bn was invested in solar photovoltaic technology. Dye-Sensitized Solar Cells (DSC) are expected to play an increasing role in renewable energy generation over the next decade and beyond, but several practical issues need to be overcome to facilitate large-scale economic production. Fundamental research at Bangor has laid the ground for collaborative work with industry which has overcome several of the key production constraints in their manufacture, increasing production speed and efficiency and substantially reducing costs. As a result, we have developed a Technology Roadmap with a major multinational partner (TATA) which has led to significant investment in plant and to the production of pilot products in the form of photovoltaic roofs, currently undergoing outdoor testing.

Submitting Institution

Bangor University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Electrical and Electronic Engineering, Materials Engineering

1. Discovery and development of the world’s most powerful antiviral agent against shingles.

Summary of the impact

A new family of antiviral agents, bicyclic nucleoside analogues (BCNAs), discovered in Cardiff University has led to a highly potent anti-VZV (shingles) molecule, FV-100. On a worldwide basis more than two million patients are affected by shingles annually. FV-100 has successfully completed Phase II clinical trials, showing it is safe, potent and effective and with clinical advantages over the current standard of care. FV-100 has received more than $30 million in R&D investment, generating patents and creating highly skilled jobs in the UK and the USA, with the parent company currently valued at $397 million. It will enter registration trials in late 2013.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Medical and Health Sciences: Medical Microbiology, Pharmacology and Pharmaceutical Sciences

2. Platinum-Group Element mineral deposits: exploration, evaluation and beneficiation

Summary of the impact

Platinum Group Elements (PGE) are critical strategic metals because of their unrivalled applications in catalysts, fuel cells and electronics and cancer therapies. Research and analytical methods developed at Cardiff have impacted on exploration for new PGE deposits, and more efficient processing of PGE ores by international mining companies. A key milestone between 2009 and 2012 was the discovery of a 3 billion year old giant impact crater in West Greenland. This discovery is of major economic significance because all craters previously found in this size class are associated with multi-billion dollar mineral and/or hydrocarbon resources. It led to an intellectual property transaction worth CDN$ 2.1 million and discovery of nickel and PGE deposits in Greenland by North American Nickel Incorporated.

Submitting Institution

Cardiff University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

4. Low-Carbon Engine Design Through Integrated Computer Simulation-Validation

Summary of the impact

Cardiff University's research has provided quantitative characterisation of transient fuel sprays under engine condition for the first time. This has enabled integrated design optimisation of Gasoline Direct injection (GDi) engines, through computer simulation validated by Cardiff's experimental measurements. The method has been developed and used in collaboration with Ricardo, a world-leading engine design consultancy, and has resulted in:

Economic impact

  • Ten contracts, generating Ricardo revenue of over £20M from major OEMs worldwide (including Ford, GM, SAIC, Proton and Chrysler);
  • An additional $7M Ricardo contract secured with a major US manufacturer (2013);
  • Increased licence sales (over £1M/year sales worldwide) for commercial software `VECTIS';
  • A novel tri-fuel Spray-Guided Direct Injection (SGDI) production engine designed and developed on behalf of PETRONAS (Malaysia).

Environmental impact
There have been substantial reductions in global CO2 emissions. Prior to 2012, GDi engine production had resulted in over 20M tonnes CO2 reduction globally, including 10M tonnes across Europe. A global reduction of 10M tonnes/year is predicted by 2020. Gasoline engines designed or developed by Ricardo in collaboration with Cardiff have provided a considerable contribution to this reduction. Cardiff's measurement techniques provided an essential step in designing these engines. For example, the PETRONAS engine uses 20% less fuel and produces 80% less NOx.

Improved Professional Engineering Practice
Cardiff's experimental validation methodology has enabled Ricardo to design engines through simulation rather than step-wise empirical development, significantly reducing lead time.

Submitting Institution

Cardiff University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

Realising the potential of 3D scanners through reverse engineering and digital shape reconstruction

Summary of the impact

3D scanning technology has enabled multiple opportunities for innovation in diverse areas such as manufacturing, design, and the arts. However, full utilisation of this technology requires not just the scanning hardware, but accompanying software that can build meaningful, editable models. This development has been pioneered by research conducted in the School of Computer Science and Informatics, at Cardiff University. Innovative algorithms for reverse engineering and digital shape reconstruction were devised that enabled the reconstruction of complex computer aided design (CAD) models from data captured by 3D scanners. The algorithms have been endorsed by Geomagic Inc, a market leading American software corporation (recently acquired by 3D Systems), that has subsidiaries in Europe and Asia and global distributors, and incorporated into their software product suite. This is accessed by nearly 10,000 licensed users worldwide, who have applied the product for industrial applications including aerospace and automotive engineering, product design, cultural heritage preservation, and healthcare. Accordingly, the impacts claimed are twofold: a) economic gain manifesting in the benefits to Geomagic and a plethora of end users who have utilised the software, b) impact on practitioners and professional services in diverse domains.

Submitting Institution

Cardiff University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics

4. Cardiff chemiluminescent technology underpinning global adoption of nucleic acid-based clinical diagnostic assays.

Summary of the impact

Cardiff University research led to second-generation chemiluminescent technology. The invention allowed for internal amplification control in nucleic-acid based clinical diagnostic assays for infectious disease and produced results with greater accuracy and fulfilled previously unmet regulatory standards. Adopted by the market leader in nucleic acid diagnostics (a sub-licensee of Cardiff University) the Cardiff technology is used globally in more than 60 million in vitro diagnostic tests annually. Sales of the tests approach $500 million per year and the sub-licensee was subsequently sold for $3.8 billion.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Clinical Sciences

1. Understanding the properties of caprocks to improve hydrocarbon

Summary of the impact

Economic gains by oil and gas companies, improvements in professional practice in hydrocarbon exploration, and environmental benefits from identifying CO2 disposal sites have been achieved through a Cardiff-led consortium with industry. Building on research carried out since 2004, ten of the largest oil companies in the World have contributed to and benefited from understanding how faulted caprocks behave under specific geological conditions. Research at Cardiff has shown which families of faults and fractures make caprocks highly permeable, thus improving Industry's ability to predict if caprocks are able to prevent oil and gas reaching the surface.

Submitting Institution

Cardiff University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Geology, Geophysics
Engineering: Resources Engineering and Extractive Metallurgy

2. THz detection from the distant universe to the international market

Summary of the impact

Research and Development activity at Cardiff University's Astronomy Instrumentation Group (AIG) has been commercialised and made available to the international market. Sales have been made to fields including bio-molecular spectroscopy for health science, plasma fusion diagnostics for sustainable energy, and remote atmospheric sensing. This has resulted in economic impact through:

  • revenue generated by the Group's spin-out company, QMCI Ltd., which has demonstrated increased global sales of unique AIG technology through commercialisation of the latest THz detection systems and advancing product development and performance;
  • exploitation by third parties in the alternative energy and security markets.

Submitting Institution

Cardiff University

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Affordable Diffusion Bonding (ADB) of laminate sheet to produce micro-cellular structures relevant for ultra-lightweighting and high efficiency thermal and chemical devices for the aerospace, automotive, medical, chemical manufacturing sectors.

Summary of the impact

Diffusion bonding (DB) is well-known for producing structured materials with fine scale features and is a critical technology for high efficiency reactors, e.g. heat exchangers and fuel cells, but currently equipment is slow and expensive (and there are size limitations to the `assemblies' that can be built). The University has researched and developed, with industry partners, a rapid affordable diffusion bonding (ADB) process involving direct heating to provide appropriate temperature and stress states and utilising flexible ultra-insulation (vacuum) for pressing titanium (and now aluminium) sheets together. The process operates at low stresses thus avoiding `channel' collapse. Investment is taking place in the partner companies to exploit the technology. A breakthrough has been achieved in the chemical machining of three dimensional structures for laminar flow technology assemblies in aluminium and titanium, that can be built by ADB.

Submitting Institution

University of Wolverhampton

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering

1. Enabling the cost-effective and environmentally friendly production of Perspex

Summary of the impact

Cardiff University, through developing and patenting a commercially viable synthetic route to a catalyst, has enabled the application of a new process, the Alpha Process, for the production of methyl methacrylate (MMA), a key commodity precursor to Perspex. The Alpha Process has had economic and environmental impacts.

Lucite International, the world's leading MMA producer, has invested in major Alpha Process production facilities in Singapore and Saudi Arabia, benefitting from a production route which is more efficient, more reliable and cheaper than conventional routes.

The Alpha Process also brings environmental benefits, as it does not rely on the use of corrosive and toxic feedstocks, such as hydrogen cyanide, which are associated with conventional MMA processes.

Submitting Institution

Cardiff University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

Filter Impact Case Studies

Download Impact Case Studies