Similar case studies

REF impact found 20 Case Studies

Currently displayed text from case study:

Bristol research helps reduce the threat to people and property from snow avalanches

Summary of the impact

Research carried out in the School of Mathematics at the University of Bristol between 1998 and 2005 has been instrumental in the development of structures that arrest or deflect the rapid flow of snow that characterises avalanches in mountainous regions of the world. The research has been embodied in a series of guidance documents for engineers on the design of such structures and many defence dams and barriers have been built across Europe since 2008. The guidance is now adopted as standard practice in many of the countries that experience avalanches. Investment in avalanche defence projects based on the design principles set out in the guidance runs into tens of millions of pounds. The Bristol research is also used internationally in the training of engineers who specialise in avalanche protection schemes. Given the scale of the threat to life and property from these potent natural hazards, the impact of the research is considerable in terms of the societal and economic benefits derived from the reduction of the risk posed by snow avalanches.

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

17. Improving the Aerodynamic Performance of Formula One Racing Cars

Summary of the impact

Since the 1970's the influence of aerodynamics on racing car design has risen substantially, and now in the modern era it is seen as one of the most important factors in producing a race-winning car. Research carried out in the Department of Aeronautics at Imperial College London, into flow control techniques and the development of cutting-edge numerical and experimental methods has allowed specific and significant improvements in the aerodynamic design of Formula One racing cars. This has led to reduced lap times and a more competitive racing environment. These advances have also contributed to improving handling, resulting in a safer racing environment. This research has provided the Formula One industry, which has an estimated annual turnover of $2 billion, with a means to employ engineers who have the key knowledge and insights that allow them to continue to innovate in a tightly controlled engineering environment. The Chief Designer or Chief Aerodynamicist in six out of the twelve 2012 F1 teams have carried out relevant research at Imperial College London.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Advanced fluid flow modelling improves the efficiency of industrial burners

Summary of the impact

Using advanced mathematics and numerical modelling we have demonstrated how fundamental understanding of laminar-turbulent transitions in fluid flows can save energy. From 2008 we helped the cleantech company, Maxsys Fuel Systems Ltd, to understand and improve their technology and demonstrate to customers how it can reduce fuel use by 5-8%. Customers including Ford Motor, Dow Chemical and Findus testify to the impact from financial savings and reduced carbon emissions obtained by installing Maxsys products on industrial burners used widely in many industrial sectors including automotive, bulk chemicals and food. In 2010, Selas Heat Technology Company bought the Maxsys brand to invest in this success.

Submitting Institution

Aston University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Interdisciplinary Engineering

Optimal design of flow handling systems using computational fluid dynamics

Summary of the impact

University of Huddersfield research into the optimal design of flow-handling systems has been credited with "transforming" the development strategies and global market sales of an industrial partner. Weir Valves and Control Ltd has enjoyed a 75% saving in design lead time and a 1,800% increase in annual sales - from several thousand before its collaboration to millions in 2013 - through the structured integration of researchers' computational fluid dynamics expertise in its design process. The success of this collaboration, which has been described as an exemplar of a Knowledge Transfer Partnership, has also led to further research contracts.

Submitting Institution

University of Huddersfield

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Interdisciplinary Engineering

13. Increased safety and efficiency of oil and gas process designs from improved flow assurance

Summary of the impact

Multiphase flow research at Imperial has developed bespoke software code, and provided unique data for validation of commercial codes used for oil-and-gas design. This research has enabled global oil companies (e.g. Chevron) to undertake successfully the design of deep-water production systems requiring multi-billion pound capital investments. This research has also allowed SPT Group (now owned by Schlumberger), one of the largest software (OLGA) providers to the oil industry, to maintain their position as market leaders.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Electrostatic measurement of pulverised fuel flow

Summary of the impact

Coal fired power stations will be a major element of global power generation for the foreseeable future. Measurement, and hence control, of pulverised fuel flow is a vital technology for the efficient and green operation of coal fired power stations. Balancing fuel delivery and combustion stoichiometry increases boiler efficiency and reduces emissions. Research in this area carried out at Teesside University was adopted by ABB Ltd and led to the commercial development of new powder flow measurement systems (PfMaster technology) installed in power stations around the world. Quantifiable economic benefits of the installations to date amount to >£3.4 M with concomitant environmental benefits of significant reduction in CO2 and NOxemissions and solid waste disposal burdens.

Submitting Institution

Teesside University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Interdisciplinary Engineering

Mathematical Foundations of Flow Assurance Issues in the Petroleum Industry

Summary of the impact

This case study relates to research supported under contract by Statoil AS, one of the world's largest oil and gas companies, and is focused on two major issues of significance to that industry, namely, the mathematical modelling and analysis of (a) hydraulic two-layer gas/liquid flow in pipe lines and (b) wax formation in the interior walls of pipe lines transporting heated oil. These projects arose out of contacts between senior research staff at the Statoil Research Centre and the Nonlinear Waves group in the School of Mathematics. The theoretical research undertaken was designed to complement the major experimental programmes developed at the Statoil Research Centre and was performed in collaboration with scientists there. The work has provided Statoil with a reliable theoretical framework to contextualise and enable comparison with experimental results and to inform the design of future experimental programmes. In the larger context, the research has played a key role in advancing the capability of Statoil to design and implement more economical, energy efficient, and environmentally safe strategies for gas/oil delivery via extended pipeline networks. Statoil have stated that the benefit of access to robust flow models in the North Sea context is rapidly approaching an economic value of many billions of Norwegian kroner.

Submitting Institution

University of Birmingham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Profiled Endwalls for Reduced Fuel Burn

Summary of the impact

This impact is the improvement of aircraft engine efficiency by the application of profiled endwalls to turbine blades. The technology was researched by Durham University and exploited by Rolls-Royce by deploying the technology on airframes. Engines with profiled endwalls include the Trent 900 (A380 airframe), Trent 1000 (787 Airframe) and Trent XWB (A350 airframe). This (as of April 2013) totals around 2000 aircraft engine orders with profiled endwall technology applied. A saving of 1750 litres of fuel per flight from Zurich to Singapore was estimated when profiled endwalls are applied. This gives a 4400 kg reduction in carbon dioxide emissions for such a journey with a fuel cost saving of over $1100. In addition to the environmental benefit and the obvious cash savings for airlines an economic benefit for UK industry has arisen as Rolls-Royce is able to sell engines with a reduced fuel burn as well.

Submitting Institution

University of Durham

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Mechanical Engineering, Interdisciplinary Engineering

Innovative Tunnel Backfill by Pneumatic Conveying of Dry Particulate Materials.

Summary of the impact

Research at GCU led to a novel method for backfilling pipeline tunnels providing the ability to fill tunnels three times more quickly than the traditional method resulting in a cost saving of £1.5M on a single project. This approach is now best practice at Murphy Pipelines Ltd (MPL) and features in current tenders to a value of £30M. The change in fill material lowered the carbon footprint by 5000 tonnes in a CEEQUAL award winning project, in addition, the removable fill material allows the recycling and re-use of tunnels, adding to the assets of the company and reducing costs.

Submitting Institution

Glasgow Caledonian University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Chemical Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Developing new toothpastes to improve well-being for people who suffer with sensitive teeth

Summary of the impact

Research conducted by Professor Matthews at the University of Bristol, has led to the alleviation of pain for people who suffer from sensitive teeth through the development of improved desensitising toothpaste products sold globally by leading toothpaste manufacturers. In 2000 and 2007, Matthews' group provided the first direct evidence that fluid flow in dentinal tubules results in activation of the sensory nerves in teeth and that this fluid flow is responsible for the pain associated with sensitive teeth. This evidence underpinned the development of a new generation of desensitising toothpastes, which act by blocking the dentinal tubules and preventing the movement of fluid, providing pain relief from thermal sensitivity.

Submitting Institution

University of Bristol

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Neurosciences

Filter Impact Case Studies

Download Impact Case Studies