Similar case studies

REF impact found 12 Case Studies

Currently displayed text from case study:

Fire Safety Engineering Group (FSEG) Fire and Evacuation Research

Summary of the impact

The Fire Safety Engineering Groups (FSEG's) research related to fire dynamics, fire modelling, human behaviour and evacuation modelling is saving lives because it is used to design safer aircraft, ships and buildings. Its Economic impact stems from licensing the SMARTFIRE and EXODUS software to over 300 organisations in 32 countries and commercial applications of the software which enable the realisation of cutting-edge designs and enabling the continual safe use of heritage structures such as the Statue of Liberty. Impact on Practitioners is a result of changes to international maritime guidelines based in FSEG research and the wide scale use of the SMARTFIRE and EXODUS software by engineers around the world. Society impact results from its research featuring in a number of popular documentary programmes attracting audiences measured in the millions.

Submitting Institution

University of Greenwich

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Materials Engineering
Built Environment and Design: Design Practice and Management

Fire Safety Engineering Group (FSEG) evacuation research

Summary of the impact

The Fire Safety Engineering Groups (FSEG's) research related to human behaviour associated with evacuation and evacuation modelling is saving lives because it is used to design safer aircraft, ships and buildings. Its Economic impact stems from licensing the EXODUS software to 250 organisations in 32 countries and commercial applications of the software which enable the realisation of cutting-edge designs and enabling the continual safe use of heritage structures such as the Statue of Liberty. Public Policy impact stems from FSEG aviation research influencing Australian government aviation safety policy while impact on Practitioners is a result of changes to international maritime guidelines based in FSEG research and the wide scale use of the EXODUS software by engineers around the world. Society impact results from its research featuring in a number of popular documentary programmes attracting audiences measured in the millions.

Submitting Institution

University of Greenwich

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Psychology and Cognitive Sciences: Psychology

06 - Fire Safety: Transforming Building Design

Summary of the impact

Enhanced public safety and transformation of structural design for fire has resulted from improved building design through ERPE researchers' development of new and unique design methodologies, frameworks and tools for analysing fire spread. Fire safety engineering research within ERPE has created an improved scientific understanding of the effect of fire on structures and materials. Structural and fire safety engineers across UK, EU, USA, Canada as well as those who are members of international fire safety bodies have subsequently implemented significant advances for the design of safer, more economical, sustainable, and architecturally innovative buildings.

ERPE research has thus assisted the design and construction of increasingly optimised, sustainable, and economical buildings globally with significant changes in building design and regulation, particularly during 2009-2013.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Political

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Civil Engineering
Built Environment and Design: Engineering Design

Mechanistic research supports the transition to environment friendly fire retardant

Summary of the impact

Our research provided the evidence to persuade companies to develop fire retardant formulations based on naturally occurring mixtures of hydromagnesite and huntite (HMH) that were more effective, cheaper, and greener than the market leader, aluminium hydroxide (ATH). Before the research started, in 2005, annual global sales of HMH as a fire retardant were less than [TEXT REMOVED FOR PUBLICATION] 000 tonnes. By 2012, sales had already doubled to [TEXT REMOVED FOR PUBLICATION] 000 tonnes (£[TEXT REMOVED FOR PUBLICATION] M) and continue to grow. LKAB minerals supply over 90% of the global market in HMH, and as a result of UCLan's fire retardant research, expect HMH to replace at least 25% of fine grade ATH within 5 years (increasing HMH sales to £[TEXT REMOVED FOR PUBLICATION] M). Not only is HMH a more effective fire retardant, it does not have the environmental problems associated with ATH.

Submitting Institution

University of Central Lancashire

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Designing Novel Fire Safe Materials: FIRESAFE

Summary of the impact

The use of fire retardants is a requirement to reduce fire severity and deaths but is also controversial due to environmental (leaching) and health consequences of commonly used halogenated fire retardants. A novel methodology has been developed and validated in the Fire Safety Engineering Research and Technology centre (FireSERT), Built Environment Research Institute, for the prediction of large-scale burning behaviour of fire retarded polymers by combining small-scale (mg size) experiments with computer simulations of fire growth and toxicity. The research has been instrumental for companies in redesigning their products (fire doors and intumescent coatings) and is informing the development of EU regulations regarding the use and replacement of halogenated fire retardants. The research output has been published in leading journals, cited widely internationally and referenced by key organisations.

Submitting Institution

University of Ulster

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Robust assessment of fire toxicity leading to safer products and less loss of life and injury from fires

Summary of the impact

The Steady State Tube Furnace (ISO/FDIS 19700) allows fire toxicity to be quantified in real fire conditions. This has led to the introduction of "acidity classification" for cables in the European Construction Products Directive/Regulation (2008/2013) (as a surrogate for fire toxicity) to promote the use of safer, low smoke, zero halogen (LSZH) alternatives to PVC cables. Additionally, architects and building specifiers can use our data to avoid the most toxic foam insulation materials in low energy buildings. The biggest impact of our work, the global reduction in loss of life in fire is probably the most difficult to quantify, as too many other factors influence the fire statistics.

Submitting Institution

University of Central Lancashire

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences, Public Health and Health Services

Case Study 2 - Fire Prevention and Community Safety

Summary of the impact

This case study concerns research in the fields of fire prevention and community safety. A novel causal factor model of accidental dwelling fire risk was developed and incorporated into a geographical information system for fire prevention management, which has been used by Merseyside Fire and Rescue Service (MF&RS) to support delivery of fire prevention activities within the region since 2010.

In addition, a novel customer segmentation approach was developed to provide an enhanced understanding of at-risk social groups in terms of combined fire risk, health risk, social care risk, and crime risk. This formed the basis for further analysis of causal factors within the same geographical area, enabling the deployment of yet more accurate targeting of fire prevention resources.

The impact of the research has been the adoption of the approach as a form of best practice to improve targeting of fire prevention activities, which is a contributing factor to the observed reduction in fire incidence. This was associated with a reduction in accidental dwelling fires by approximately 12% (163 incidents) observed across Merseyside between 2009/10 and 2012/13.

Submitting Institution

Liverpool John Moores University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Medical and Health Sciences: Public Health and Health Services

Policy Support for Wildfire Management & Contingency Planning in the United Kingdom

Summary of the impact

Wildfire was barely recognised as a significant hazard in the UK prior to University of Manchester (UoM) research, that significantly changed stakeholders' and national policy-makers' awareness. This work on mapping and forecasting moorland wildfire risk has informed the Cabinet Office, and has demonstrated clear impact on fire preparedness planning in the Peak District National Park (where it is estimated that a large fire is potentially avoided each year). Following an ESRC-NERC seminar series (FIRES), the England and Wales Wildfire Forum (EWWF) was established, with EWWF persuading Government to further amend national policy on wildfire. This impact is ongoing, with DEFRA including wildfire in its `National Adaptation Programme', and the Cabinet Office recently including wildfire within the `National Risk Assessment' framework.

Submitting Institution

University of Manchester

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management

Innovative Safe Structures in Buildings: STRUCTURES

Summary of the impact

The development of standards and design guides at a European level for composite concrete floors with cellular steel beams has been informed by research undertaken in the Fire Safety Engineering Research and Technology centre (FireSERT), Built Environment Research Institute. Central to the impact is the establishment of technical rules for the fire safe design of buildings constructed with the use of cellular beams. Research at the University of Ulster has demonstrated that the use of unprotected cellular beams can reduce the cost of fire protection. This research was corroborated by a major fire test conducted at an international scientific conference hosted by FireSERT in February 2010. Design guidance for innovative safe structures in fire scenarios have been published in leading journals with high impact factors.

Submitting Institution

University of Ulster

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Building

Employing Operational Research and Social marketing to improve emergency preparedness

Summary of the impact

Research carried out Aston University into the use of Operational Research and Social Marketing techniques to optimize the creation, implementation and evaluation of preparedness for different types of emergency, has led to impacts at local, national and international level. This research has:

  • Influenced and changed the way in which government agencies deal with mass decontamination following a CBRN (Chemical, Biological, Radiological or Nuclear) incident.
  • Influenced the decision process for allocation of resources to respond to terrorist attacks and natural disasters.
  • Increased understanding and changed policy and the creation process for plans regarding preparedness for mass evacuation for government organisations.

Submitting Institution

Aston University

Unit of Assessment

Business and Management Studies

Summary Impact Type

Societal

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems
Medical and Health Sciences: Public Health and Health Services

Filter Impact Case Studies

Download Impact Case Studies