Similar case studies

REF impact found 61 Case Studies

Currently displayed text from case study:

Passively safe street furniture

Summary of the impact

Dr Richard Brooks and his team at the University of Nottingham have been investigating the high strain rate behaviour of composite materials since 2003. This has led to the development of two products that are being installed in streets in the UK and Ireland by East Midlands SME Frangible Safety Posts Ltd. The direct benefits to the company have been: the installation of 900 products in the UK and Ireland; saving of £17k capital cost and 2 months in terms of time to market per product developed and; raising of £1.8M investment to bring the products to market At least one life has already been saved in the Shetland Islands as a direct consequence of the product behaving in the way it was designed to.

Submitting Institution

University of Nottingham

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Light-weighting of automotive and aerospace transport

Summary of the impact

The automotive and aerospace industries are keen to reduce their environmental impact and so have looked to move to lightweight materials. This creates issues in terms of joining, using and disposing of dissimilar materials. Oxford Brookes has therefore worked with national and multi-national companies in the adhesive, materials, automotive and aerospace industries to try to solve these problems. This has resulted in high quality research publications, innovative test equipment, improved numerical methods, novel designs, design guidelines, manufacturing procedures, British Standards, patents, commercial products and further funding. The impact of the work has global safety, environmental and economic benefits with multi-national aerospace and automotive companies implementing the results in current developments.

Submitting Institution

Oxford Brookes University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Sandwich structures

Summary of the impact

Research at University of Cambridge Department of Engineering (DoEng) has created a new fundamental understanding of the static, dynamic and blast performance of lattice sandwich structures (a repeating pattern of metal struts between two sheets of metal). Ship builders in the Netherlands and the USA have built over 19 ships worth approximately GB200M using this technology since 1/1/2008 with many more planned. These ships are:

  • less likely to rupture in low speed collisions, which is important especially for river tankers
  • compliant with new standards for the carriage of dangerous goods by inland waterways in Europe at a lower cost, because the designs are simplified
  • blast resistant, which is important when considering potential terrorist threats.

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Manufacturing Engineering, Materials Engineering

Safer and more economical slender structures

Summary of the impact

Research, led by Oxford Brookes University's Dr Mike Godley and Dr Rob Beale, into the design and analysis of scaffold structures has enabled a better understanding of their behaviour, higher standards of safety and improved design. The Group produced technical guidance to the HSE and authored the design guide TG20:08 (2008); the basis for scaffold design in the UK. The Group contributed to new Euronorms for scaffolding and the UK design guide is compatible with these. Furthermore, the Group informed a pan- European design guide for storage racking systems (2000) that later transformed with little modification into EN 15512 (2009). This is now the basis for the design of all such storage racks across Europe.

Submitting Institution

Oxford Brookes University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering, Civil Engineering

18. Improving survivability of protective structures through novel design and modelling

Summary of the impact

The vulnerability of both military and civilian infrastructure to the threat of terrorist activity has highlighted the need to improve its survivability, and this poses a significant design challenge to engineers. Research work at Imperial has led to the development of novel constitutive relationships for polymeric materials coupled to novel analysis procedures; software algorithms for effective simulations of blast and impact events; and enhanced experimental testing methods allowing a fundamental understanding of the structures. According to Dstl, this body of research has `unquestionably improved the security and effectiveness of the UK armed forces operating in hostile environments abroad as well as the safety of citizens using metropolitan infrastructure within the UK'. The techniques have been applied to vehicles and UK infrastructure, including for high profile events, such as the 2012 Olympics.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Lancaster’s research on pultruded glass fibre reinforced polymer composite joints and structures – its impact on current and emerging design codes

Summary of the impact

The key impact is in the definition of best practice for the design of joints, components and structures comprised of glass fibre reinforced polymers (GFRP, also known as fibreglass). The primary beneficiaries are (i) professional civil and structural engineering designers of GFRP structures; (ii) pultruders and composites fabricators due to continually expanding use of GFRPs in construction; and (iii) the general public through the provision of sustainable structures.

In particular, Lancaster's research on pultruded GFRP materials and structures has contributed to the EUROCOMP Design Code and Handbook (1996), the world's first limit state design code for GFRP structures. This code has influenced GFRP structural design globally ever since, both pre and post-2008. Additionally, post-2008, EUROCOMP has triggered and influenced development of new European and Japanese design codes, in turn impacting designers, fabricators and the public in those geographical regions. Lancaster's research has influenced the US Load and Resistance Factor (LRFD) Prestandard (2010) and ASCE's Manual No.102 on bolted and bonded joints (2011) two codes and guidelines that will accelerate the US's application of composites in construction.

Thus, the use of Lancaster's research in these codes and guidelines has supported the construction of fibreglass-based civil structures across the globe as well as the delivery of individuals with the analysis and design skills needed by the composites industry.

Submitting Institution

Lancaster University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Materials Engineering

7: Structural use of stainless steel

Summary of the impact

National and International design codes are the key vehicles for enabling structural engineering research to impact on practice. Recent years have seen substantial advancements in such codes for stainless steel structures, to which Imperial has made outstanding contributions [A-E]. Imperial research has led directly to improved structural design provisions, enabling more efficient structures, leading to cost savings [G], further promotion of the use of stainless steel in construction [A,H,I] and a reduction in the use of construction resources. The impact and reach of Imperial's research has not only been throughout the industry (producers [H], code writers [A] and practitioners [G,I]) but also global, with widespread influence on UK, European, North American and Asian practice [A].

Submitting Institution

Imperial College London

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering

4. Mitigation of geotechnical risk through the development of advanced numerical tools – ICFEP

Summary of the impact

The development of the bespoke finite element software ICFEP (Imperial College Finite Element Program) is the main research outcome of the numerical group in the Geotechnics Section at Imperial College (IC). The research conducted in the Section since 1993 has led to a substantial growth of ICFEP's modelling capabilities in both complexity and robustness, following closely the advancements in understanding of real soil behaviour achieved through laboratory and field investigations of soils. Between 2008 and 2013 the application of these modelling capabilities to practical engineering problems, which are generally unavailable with a similar degree of sophistication in commercial software, amounts to over 80 projects of which a third are worth multi-billion pounds in global value. The impact of ICFEP's application has been to reduce the geotechnical risk and the cost of design and construction, and to give confidence in the environmental stability of design solutions, by providing accurate predictions of soil response associated with individual projects.

Submitting Institution

Imperial College London

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy

Economic and environmental benefits of innovative sensor products for military and commercial applications

Summary of the impact

A significant body of research in ultrasonics at the University of Strathclyde led to the formation of Alba Ultrasound Limited in 2000. This successful UK engineering manufacturing company designs and manufactures high quality wideband ultrasonic array transducers for sonar applications to a worldwide client base, delivering benefits ranging from naval and maritime security through to safer ocean environments and informed exploitation of marine resources. Alba Ultrasound's unique array transducers constitute the sensor front-end in many leading sonar systems, and its innovative products are incorporated in a range of sonar devices used by the military and commercial companies. Through application of Strathclyde research, the company has experienced a significant period of growth during 2008-2013, with a three-fold increase in employees and turnover rising from £750k to £3.8M.

Submitting Institution

University of Strathclyde

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Biomedical Engineering, Materials Engineering

European codes of practice for civil engineering structures

Summary of the impact

Research led by two members of the University of Warwick's School of Engineering strongly influenced the planning, drafting and technical content of nearly all of Eurocode 4, one of ten European civil engineering standards. Eurocode 4 covers composite structures made of steel and concrete. Since 2010 this standard has been in force in all countries of the European Union (EU) and the European Free Trade Area (EFTA). The Eurocodes are the only set of design rules for publicly-funded structures on land that satisfy national building regulations throughout the EU and EFTA. Their impact on structural engineering is wide-ranging and growing, the principles and methodology contained within these Eurocode 4 will be the basis of engineering design teaching for Chartered Engineers throughout the EU.

Submitting Institution

University of Warwick

Unit of Assessment

General Engineering

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Building

Filter Impact Case Studies

Download Impact Case Studies