Log in
Atrial fibrillation (AF), a form of cardiac rhythm disturbance, significantly increases risk of stroke, heart failure and sudden death. The Division of Imaging Sciences and Biomedical Engineering at King's College London and Philips Healthcare collaborated to develop a platform for guiding cardiovascular catheterisation procedures in patients with AF. The EP Navigator is a commercial, clinical product that integrates pre-acquired magnetic resonance and computer tomography images with real-time X-ray fluoroscopy. This enhances visualisation, thereby reducing procedure time and the patient's exposure to radiation. The EP Navigator is used in around 350 out of 2,000 centres worldwide that carry out ablation therapies for cardiac arrhythmias, despite strong competition.
Imaging speed is of critical importance in most Magnetic Resonance (MR) imaging applications. King's College London (KCL) researchers have developed spatiotemporal undersamplings, or "k-t" methods, for three-dimensional (3D) imaging and corresponding image reconstruction methods that have increased the speed of imaging significantly, so that particular scans are now 5-7 fold faster. This has directly impacted the experience of the patient whose overall examination time has been reduced from more than 1 hour to less than 30 minutes depending on the application. The technology has been patented and has been implemented by Philips Healthcare, one of the three major manufacturers of MR equipment. A clinical solution platform for 3D MR cardiac perfusion and quantitative flow imaging, based on the technology developed at KCL, has also been launched by the Swiss company, GyroTools LLC.
New methods to study the biophysical action of the human digestive system were developed in Nottingham using high speed magnetic resonance imaging (MRI) and have been used by: (i) the food and drug industry (Unilever, Proctor & Gamble, Mitsubishi Chemicals, Reckitt Benckiser, Glaxo and McNeil Pharmaceuticals) to develop new products; (ii) Plant Bioscience Limited (PBL) to develop an artificial Dynamic Gut Model (DGM) which is now being applied commercially to characterise drug and food ingestion; (iii) the BBC and other media agencies in programmes related to the promotion of better understanding of nutrition in an effort to combat obesity.
Computed tomography (CT) and Magnetic Resonance Imaging (MRI) have revolutionised the practice of medicine by providing improved diagnostic accuracy resulting in improved clinical management and outcome. The evidence-based medicine approach developed by Professor Dixon and his team contributed to the timely evaluation of these technologies. Several of his studies proved improved outcome measures, including reduced mortality, shorter in-patient stay and enhanced diagnostic confidence. Examples include: CT of patients with acute abdominal problems and possible large bowel disease; CT for suspected pulmonary embolism; MRI for lumbar spine disease; MRI for knee and shoulder problems. These informed radiological guidelines adopted across Europe.
The FLAIR (Fluid Attenuated Inversion Recovery) MRI sequence developed at Imperial College has transformed the sensitivity of clinical neuroimaging for white matter brain lesions. FLAIR has had significant commercial impact with incorporation as a standard imaging sequence offered by all manufacturers on their MRI scanners. The inclusion of FLAIR in routine diagnostic MRI protocols in radiology centres worldwide provides evidence of the continued extensive reach of impact for better healthcare outcomes through improved diagnosis and management. The use of FLAIR has led to more powerful Phase II trial designs for development of medicine for stroke, neuroinflammatory disorders, epilepsy and neuro-oncology based on imaging outcomes.
University of Bristol researchers at the Bristol Heart Institute (BHI) have pioneered the development and clinical take-up of the novel technique of off-pump coronary artery bypass (OPCAB) surgery. Over ten clinical trials and several large cohort analyses have assessed the impact of this technique on elective and high-risk patients. The results have shown that it is as safe as the conventional coronary artery bypass grafting (CABG) technique that uses a cardiopulmonary bypass pump and cardioplegic arrest. Most importantly, however, OPCAB significantly reduces the risk of post-operative complications, and reduces morbidity and mortality. It also uses less hospital resources, reducing time in intensive care and length of hospital stay. In 2011 (the last year for which data are available), 20% of CABG operations in the UK were carried out with the OPCAB technique and it has had significant take-up overseas (for example, 18% of CABG operations in the US and 21% in the EU in 2010). NICE has recommended the safety and efficacy of OPCAB surgery.
Theoretical and computational methods for optimising the design of gradient and shim coils with arbitrary shapes and topologies were developed in collaboration with Magnex Scientific as part of a CASE award (2004-07). The resulting software was licenced to Agilent (who now own Magnex Scientific), for whom it has opened up new market opportunities in the supply of novel magnetic resonance imaging systems, leading to £3.4M sales since 2009. The software has also been used by Paramed Medical Systems to improve their `open' magnetic resonance imaging systems, which are optimised for orthopaedic imaging, allow vertical subject posture, and facilitate image-guided treatment, as well as offering a better patient experience. Our work has thus resulted in impact in the economy and healthcare.
Nottingham researchers constructed the world's first 3T MRI scanner, thus demonstrating the viability and benefits of high-field MRI. This provided a stimulus for magnet and MRI system manufacturers to develop 3T scanners, which have now become established as the standard platform for high-end clinical MRI studies. We estimate that since 2008: 2500 3T scanners have been installed, representing a global investment of $5 billion;and 30-40 million patient examinations have been performed with 3T MRI scanners. Technical advances which underpinned the Nottingham 3T scanner also impacted on the development of functional MRI, thus opening up a new field of medical research and clinical application. In a subsequent phase of research, the Nottingham group developed ultra-high (7T) magnetic MRI in partnership with PhiIips; forty 7T MRI scanners (current unit cost >$10M) have now been installed across the world.
The research team at Bucks New University has provided the groundwork for a number of applications to use cardiac power output as a novel functional measurement in the clinical evaluation of patients with heart failure and other related diseases. It involved validating the measure, assessing its reliability and applying it to a group of patients with end-stage heart failure. The success of this procedure is now evidenced by the number of national and international clinical centres adopting cardiac power output as a key functional measurement.
A collaborative research project between the Division of Imaging Sciences and Biomedical Engineering, King's College London (KCL) and Philips Healthcare has devised methods to register (i.e. align or match) pre-operative 3D computed tomography (CT) images to intraoperative 2D X-ray images, resulting in more accurate and robust registration/alignment measures. The measures can be applied directly to images from standard X-ray machines, allowing for rapid translation to guide surgical procedures and radiotherapy. These measures (or close variants) are used routinely in commercial products by Accuray, Philips Healthcare and Cydar Ltd (KCL spinout), benefitting the care of hundreds of patients worldwide, every day.