Similar case studies

REF impact found 11 Case Studies

Currently displayed text from case study:

Impact on the use of novel microwave systems for converting waste into energy

Summary of the impact

The demand for biofuels and alternative energies is increasing globally as a sustainable source of energy is sought for the future. Energy from crops is no longer a viable option due to the increase in wheat prices. Scientists at the BEST Research Institute have managed to bridge the gap by using novel and unique microwave systems for converting waste (biomass, food, animal) into energy. Our advances in this area have generated considerable interest from both national (e.g., United Utilities PLC, Balfour Beatty PLC, Biofuels Wales Ltd, Stopford Projects Ltd, Longma Clean Energy Ltd) and international (e.g., RIKEN-Japan, Fraunhofer-Germany, Sairem-France, Acondaqua-Spain, Ashleigh Farms-Ireland) companies. This has resulted in several collaborative, funded projects leading to industrial adoption of our microwave technologies.

Submitting Institution

Liverpool John Moores University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering
Technology: Industrial Biotechnology

Baffled Reactors for Continuous Reaction and Crystallisation

Summary of the impact

Research at Heriot-Watt University (HWU) has led to the development of a new continuous oscillatory baffled reactor and crystalliser technology. This has direct economic and environmental impact in the chemical, pharmaceutical and food industries. Waste is substantially reduced, while the scale of the equipment and plant is dramatically decreased, reducing time to market, start-up and maintenance costs and on-going energy usage. The reactor/crystalliser was taken to market through a spinout, NiTech Solutions Ltd, with a peak of 16 employees in the REF period. Genzyme (now Sanofi) has implemented NiTech's technology for biopharmaceutical manufacture since 2007, with multi-100 ton production and sales of multi-£100M pa. The technology now underpins the larger-scale joint venture, the Continuous Manufacture and Crystallisation (CMAC) consortium, launched in 2010. CMAC has attracted over £60M investment, much of it from three major industrial partners, GSK, AstraZeneca and Novartis, with additional second-tier investors. CMAC is accelerating the introduction of new process-intensification technologies in the process industries.

Submitting Institution

Heriot-Watt University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Engineering: Chemical Engineering, Interdisciplinary Engineering

BioPhotoVoltaic Devices

Summary of the impact

Developing renewable sources of energy has to go hand in hand with reducing energy demand through increased energy awareness and behavioural change. To this end a multidisciplinary consortium of researchers, led by Professor Christopher Howe (Biochemistry), have developed several biophotovoltaic (BPV) devices for off-grid electricity generation, and as educational tools. This has resulted in impact on commerce (i.e. the acquisition of a BPV spinout company by Ortus Energy Ltd in 2009 through share exchange), on society and culture (an award-winning `Moss Table' developed by the consortium, which incorporates BPV technology, has been exhibited internationally since 2011 and has received extensive international media coverage) and on educational practices (a prototype BPV educational tool for schools has been developed by Howe and colleagues in 2013 and trialled with 6th form students).

Submitting Institution

University of Cambridge

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Creation of industrial products, processes and company growth from research on highly structured materials for gas adsorption and separation

Summary of the impact

Research at the University of Bath on highly structured materials for adsorbing and separating gases has created business and economic impact via:

  • Inward investment of £2.5 million in a University spin-out small and medium enterprise (SME), n-psl (Nano-Porous Solutions Ltd), whose business is developing new products for energy efficient gas separation for environmental and medical applications. Turnover of the new company is now > £1 million pa and growing, and has created significant inward investment opportunities from the USA for two of n-psl's customers, Parker Hannifin Manufacturing and Ultra Electronics, in military and personnel protection applications.
  • Improvement to existing products of an established SME (MAST Carbon International Ltd). Industrial testing of a new process, co-invented by MAST and the University, which contains the improved products; the new process is for specific gas separation aimed at meeting legislative emission limits, creating healthier workplaces, and recovery and reuse of valuable resources.
  • Creation of 28 new jobs, 24 within n-psl and four within MAST, together with the enhanced security of three within Parker Hannifin Manufacturing in the UK and several others at MAST.

[Comment: Although beyond the cut-off date for impact achievement, as at 31 October 2013 n-psl had been acquired by the FTSE 100 listed international engineering group, IMI plc.]

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering
Medical and Health Sciences: Public Health and Health Services

Optimisation of Anaerobic Process Technology

Summary of the impact

This case study describes the impact of the research work relating to anaerobic process technology undertaken within the Sustainable Environment Research Centre (SERC) and its industrial interfacing arm, the Wales Centre of Excellence for Anaerobic Digestion (AD). Anaerobic process technology is used globally to produce renewable energy, and other resources from wastes and low value biomasses. These impacts can be grouped into the following areas:

  • Informing Government Policy
  • Development of industry guidance, best practice, protocols and regulation
  • Driving innovation and the implementation for more efficient anaerobic digestion and biohydrogen production technologies, nationally and internationally.

Submitting Institution

University of South Wales

Unit of Assessment

General Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Chemical Engineering, Environmental Engineering, Interdisciplinary Engineering

Reliable Cable Systems for Energy Security

Summary of the impact

The supply of electrical energy to centres of demand is an increasingly important issue as our power generation sources decarbonise. Without innovation in our use of high voltage cables, security of supply to our major cities cannot be guaranteed. Our research has:

  • Identified how outdated international standards governing the rating of power cables can undermine network performance.
  • Developed improved rating methods which will save National Grid £1.2 million annually.
  • Informed new international technical guides.
  • Designed, in conjunction with major industrial partners, cables that optimise transmission for lower operational costs, minimise the risk of network failure and cut carbon emissions.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Information Systems
Engineering: Electrical and Electronic Engineering

Improved decision making by the power sector and energy saving by consumers

Summary of the impact

Financial engineering and optimisation provide both power companies and consumers with better decision support in deregulated energy sectors. UCL research has delivered the following benefits to decision makers: (i) a clearer understanding of the role of statistical analysis in imputing missing data on wind speeds and (ii) reduction in energy costs by optimised scheduling of energy technologies. Other benefits have been (i) investment in follow-up research projects by industrial companies and (ii) knowledge transfer via workshops.

Submitting Institution

University College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Economics: Applied Economics

Case 5 - Design and optimisation methods for power networks impacting industrial strategies and government policies

Summary of the impact

The Power Systems research team at Imperial made pivotal contributions in the design of power transmission networks, the equipment within these networks, and non-conventional electricity systems. Since 2008, the impact of their research has been to:

I1) influence government policies by contributing to House of Common Select Committee (2010);

I2) support the Fundamental Review of Supply Quality and Security Standards;

I3) assist National Grid in defining new investment affecting £3bn worth of network assets now approved by the regulator (2013);

I4) provide tools to develop the first offshore networks design standards in 2008, saving an estimated £500m by 2013 to date and a projected overall saving of £1-2bn by 2020;

I5) advance Alstom's design concept for next generation HVDC converter stations for offshore wind connection from TRL 1 in 2009 to TRL 4 in 2013 supported by 3 new patents;

I6) enable UK Power Network to plan network investment of £1.18bn and make savings of £130m (2013) through applying new technologies and demand response;

I7) facilitate a scheme for off-grid energy kiosks for electrification in rural Africa yielding social gains and a business opportunity.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Political

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Dynamic Extractions: New Platform Liquid-Liquid Continuous Flow Technology for the Purification and Manufacture of Drugs for Industry

Summary of the impact

In recognising the challenges facing a competitive, globalised pharmaceutical industry, the Advanced Bioprocessing Centre team at Brunel University have pioneered the technology and a methodology for speeding up the R&D, purification and manufacture of new drugs.

Already being adopted by market leading pharmaceutical companies, the High Performance Counter-current Chromatography presents a new technological platform to generate significant reductions in development costs; an increase in yield and a greener waste process.

The research supported by eight Research Councils grants totalling £3,557,168 led to establishing a spin-out company, Dynamic Extractions, which today operates a commercial enterprise with £1M turnover in partnership with Brunel.

Submitting Institution

Brunel University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Engineering: Chemical Engineering, Manufacturing Engineering

Mercury Capture Technology for the Global Petroleum Industry

Summary of the impact

Queen's University's Ionic Liquids Laboratory (QUILL) has developed an ionic liquid technology for removing mercury, a toxic, corrosive contaminant naturally present in hydrocarbon reserves, with the national oil and gas company Petroliam Nasional Berhad (PETRONAS).The technology has been successfully installed in 1-and 15-ton units in two PETRONAS gas processing plants in Malaysia. The process, marketed as HycaPure Hg™, captures all mercury species present in natural gas and has up to 3 times higher capacity than competing state-of-the-art commercial alternatives. This technology represents a significant improvement towards ensuring the health and safety of workers, process plant and the environment.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

Filter Impact Case Studies

Download Impact Case Studies